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1 Executive Summary 
The purpose of this deliverable is to investigate the possibilities for the integration of electricity-to-heat 
devices within the electricity grid throughout the energy transition. Within SUSTENANCE, the focus is on 
aggregation of flexibility offered by electricity-to-heat systems to ensure the economic integration and 
decarbonization of the grid through energy management and market integration. 
 
The opportunities for electricity-to-heat systems within this transition are tremendous. Not only do 
these devices utilize significant amounts of energy, but they also provide a sheer amount of flexibility 
through thermal storage, both in buffer vessels as well as by utilizing the thermal mass found in 
buildings. Value can be created through offering flexibility to the energy markets, in which a shift is 
observed to more dynamic tariffs and flexibility services by aggregators. An acceleration is observed 
since the start of the war in Ukraine in Europe. Furthermore, the electrification also leads to more 
congestion problems in the grid, offering an opportunity for heating systems to add value. 
 
For successful integration it is, however, important to have models and optimization algorithms for 
optimal control. Various heat models exist for the different possible components and with different 
levels of accuracy. This leads to a flexible and modular framework that can be tailored to the use-case 
(e.g., SUSTENANCE’s demonstrators) taking into account the local context, technical needs, and 
demands for market integration. Furthermore, non-linearities within heating systems are a non-
negligible aspect when it comes to demand forecasting and planning for operation. Hence utilization of 
models also depends on the time to delivery of flexibility. 
 
The result of this study is a modular framework for energy management that encompasses the 
aforementioned points. A flexible framework is created by employing an agent-based system using 
hierarchical control. As a result, computations can be executed on different levels to ensure privacy, but 
also to allow for scalability through decentralization of processes. Therefore, clear communication 
interfaces, such as FlexOffers, should be employed. This approach allows us to also carefully select the 
right models in terms of accuracy and computation needs with respect to both time and location. A clear 
definition of 7 (optional) building blocks, with roles and the respective responsible parties, together with 
timing and location are defined for this in Chapter 5. The main distinction here is a planning-phase for 
e.g., day-ahead markets, and an operational phase to ensure local grid constraints are satisfied. 
 
The resulting framework and composition of models are tested in simulation. Firstly, through literature 
and simulation studies the separate building blocks and models are verified for correctness. Next, the 
composition within the framework is tested, where aggregated flexibility of heat pumps is optimized 
ahead of time based on cost minimization using day-ahead energy prices. This planning is used as 
blueprint for operational control, wherein local grid voltages are measured to change control actions 
whenever needed to assure power quality. Through this simulation case, the working of the proposed 
framework is validated to work correctly and ensure economic benefits. 
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2 Introduction 
The climate change concerns have resulted in legislation and incentives to transform our energy system 
to become fully sustainable. Energy usage for (space) heating is, next to transportation, originally a 
dominating demand in overall energy use within the residential sector of Denmark, Poland and the 
Netherlands. In contrast, India expects to have a peak demand of 143 GW due to air conditioning 
systems. As most renewable energy sources directly generate electricity, the electrification of heating 
systems play a key-role in this transition. Furthermore, the recent geopolitical developments have added 
another strong driver to increase our energy independency and accelerates the transition to reduce 
natural gas usage for heating.  However, most existing grids have never been designed with the ongoing 
electrification of demand in mind, resulting in congestion problems. Hence, during the electrification of 
heating systems, several obstacles need to be tackled. This deliverable explores models, tools, and 
methods for a sustainable transition and integration of heating systems into the existing electricity 
infrastructure and its markets. 

2.1 Opportunities for the energy transition 
Whereas one might see the electrification of heating systems as a threat to the electricity systems, they 
may as well be a welcome element in the energy transition. Next to high volumes of energy use, the 
electrification of heat also brings the potential of affordable storage and demand flexibility. For example, 
households have inherent thermal storage capacity through their construction and hot water buffers 
and boilers are relative cheap in terms of energy capacity per euro. Coupling of heat systems to the 
electricity grid comes in the form of converting devices, such as heat pumps (HPs) that convert electricity 
into heat. Alternatively, combined heat and power (CHP) devices may also convert (sustainable) gas into 
both heat and electricity. Through these interactions, heat demand can be translated into its equivalent 
electricity demand. Using technology, such as smart thermostats and control signals, the production of 
heat, and therefore the use of electricity, can be controlled. 
 
However, there are challenges that need to be tackled to utilize the flexibility that heating systems can 
bring to the energy system and its markets. One factor is the operation in different time scales, whereas 
electricity is nearly instantaneous, heating systems react slow. Furthermore, heat usage in the 
residential sector is tightly coupled with user behaviour and weather conditions, making forecast and 
control prone to errors when looking at individual households. From a physics perspective, the 
complexity comes from the interaction that all components have on the heating demand such as, 
windows, open doors and ventilation. Therefore, heating systems likely will play a key-role on longer 
term energy balance rather than instantaneous system stability.  
 
Another complexity is defining the flexibility of a building. Different regulations and requirements 
concerning insulation of new buildings lead to vastly different thermal performance of buildings and 
therefore their inherent flexibility. Often these parameters can be estimated based on construction year 
of a building, but intermediate and undocumented upgrades may result in large errors. Furthermore, 
some parameters have a significant impact on the perceived comfort and hence may require different 
requirements on both the heating system and control by an energy management system (EMS). As a 
result, coupling heating systems to the electricity infrastructure is most likely not possible using a one-
solution-fits-all approach. This is already observed in the physical domain where distinctions can be 
made between low- and high-temperature heating systems. Furthermore, large buildings such as, 
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apartments and flats, often have a shared heating system. But also, in residential areas with normal 
houses, a new district heating system can sometimes be the most cost-efficient solution and hence we 
see more new district heating systems being developed in the Netherlands and Denmark. 
 
In this context, hybrid setups also exist, where multiple heat source can be coupled to one (district 
heating) system. For individual households, this can be in the form of a hybrid heat pump, which 
combines a heat pump with a gas boiler. This adds the option to relieve the electricity grid during 
congestion by switching back to conventional gas heating. Similarly, district heating networks may have 
different sources such as waste heat, but also local heat pumps and combined heat and power. With the 
latter, electricity can also be generated and sustainable options with short-term carbon cycles, e.g. 
biogas, could be available [Hom19]. Such solutions add complexity to the control system as the heat 
sources become a heterogenous set of devices. On the other hand, these systems may play a key role in 
overcoming seasonal aspects to heating, especially when the demand for heat is high in winter when 
renewable energy from solar is at its lowest. 
 
It must be noted that some of the aforementioned complex interactions in heating systems can be 
mitigated during operation using thermal storage. Due to the lower thermal output of heat pumps, 
buffers for hot tap water are necessary to meet domestic demand.  These buffers are a source of 
flexibility, but utilizing energy to fill up such buffers needs to be considered with due diligence to avoid 
massive energy losses over time. New insulation technologies and the application of phase changing 
materials (PCM) makes it possible to reduce the losses and significantly increase the capacity per litre. 
Also here, large scale thermal storage district heating systems is an option. Large projects, such as Ecovat 
[Goe19] make it even possible to locally store enough heat to balance out seasons. 
 
Based on these observed trends, the most promising opportunity for electricity-to-heat integration lays 
within community-based heating systems. With this, thermal flexibility can be integrated from an 
aggregated scale, which allows energy management solutions to utilize group behaviour and therefore 
avoid large errors that individual systems can impose to the control system. Additionally, this allows an 
EMS to coordinate the flexibility in both time and space, meaning that it can avoid aggregated peaks in 
time while also balancing the instantaneous load within the grid to avoid power quality issues and grid 
congestion problems. 
 
This community scope imposes two critical requirements on the technical foundation for the success of 
electricity-to-heat integration within electricity systems and markets: 

1. Acting on different timescales requires advanced predictive and self-learning models, 
potentially with machine learning techniques. Such models are essential to model-predictive 
based optimization frameworks to establish market interaction. 

2. Controlling multiple heating assets requires a scalable solution that can integrate new assets in 
the future with ease. Furthermore, this set of devices is likely to be a heterogenous set, meaning 
that the devised models and algorithms for the EMS need to be generic enough to adequately 
optimize a wide variety of devices, sizes and technologies, which all belong to a specific heating 
system. 

Yet, the local scope of individual households must not be neglected. We are speaking here of a human-
machine interaction, where the technical (machine) component must ensure comfort constraints of 
individuals are met. Hence, a direct link to user behaviour is made, but thereby also the thermal 
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properties (e.g., insulation) of a building. Thus, from a modelling perspective, the individual details 
cannot be neglected when controlling flexibility on an aggregated level. 

2.2 Research Scope 
Given this context, the research scope within this deliverable is on the potential of aggregated flexibility 
of electricity-to-heat systems within the electricity system. Given the requirements, the following 
challenges and research questions need to be investigated to allow for a successful implementation 
within demonstrators and their replication: 
 

• How to accurately model heat demand profiles and comfort constraints on a building level and 
derive its flexibility on an aggregated level?  

• How to translate complex non-linear thermal models from their long-term time-scales into 
accurate discrete flexibility models for optimal control in short-term electricity systems? 

• How to efficiently coordinate a heterogeneous set of thermal devices within a community? 
• What is the added value and accuracy of thermal control on an aggregated community level 

over existing “business-as-usual” individual control? 

2.3 Method and Outline 
This deliverable first surveys existing literature on modelling of heating systems in Chapter 3. Next, the 
trends and local context of SUSTENANCE’s demonstration sites with respect to electricity-to-heating 
systems is presented in Chapter 4. Based on this, control concepts and structures are surveyed in 
Chapter 5. Eventually, this leads to a modular energy management framework that can be tailored to 
different use-cases to integrate within the local context, both from market as technical perspective. The 
presented models and approach are validated through a simulation study in Chapter 6. Chapter 7 
concludes the deliverable. 
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3 Theoretical modelling framework 
This chapter details the theoretical foundation in terms of models and equations that allow us to 
describe thermal demand in domestic settings, energy use by devices, and behaviour of storage assets. 
Furthermore, we outline how user preferences and comfort constraints can be taken into account. The 
models presented in this chapter form the underlaying basis for control and optimization methods, 
presented in Chapter 5. The theory is independent of location and hence ensures that developed 
methods within the SUSTENANCE project can be reused and replicated elsewhere. 

3.1 Thermal demand models 
Modelling heat demand starts with maintaining the indoor temperature of a house or building at a 
predefined temperature, the setpoint. Based on physical phenomena, energy will be both added and 
withdrawn from a building. This section elaborates on models of a building envelope and all aspects that 
contribute to the temperature. Figure 3.1 shows a model of a household and the different sources that 
contribute to the indoor temperature, as well as a control system with a thermostat that activates the 
heating system (here a heat pump) based on the observed zone temperature.   The models presented 
in this section are based on the work by Van Leeuwen [vLe17] and ASHRAE [ASH13]. Demand profiles 
that can be obtained with these models serve as a lower bound constraint to device operation and hence 
also flexibility usage.  

Heat demand for space heating 
Figure 3.1. below depicts the basis of a household with floor heating system (𝑞𝑞ℎ) and all other sources 
that influence the indoor temperature. Based on this drawing, we first introduce the main components 
that influence the temperature and therefore the stored energy within a building that results in a certain 
temperature.  

 
Figure 3.1: Thermal model of a house [vLe17] 

 



101022587 – SUSTENANCE –H2020-LC-SC3-2018-2019-2020 / H2020-LC-SC3-2020-NZE-RES-CC 

 _ 

 

Page 10 of 78 

 
The heating system adds heat to the zone the living room in this case where the thermostat controller 
is located. Through the windows, additional heat can be added by solar irradiation, which depends on 
the window size. Also other sources, e.g. humans and devices emit heat energy heating up the room. 
When the ambient (outdoor) temperature is lower than the indoor temperature, heat energy will leak 
through the walls, depending on insulation and the temperature difference. Furthermore, heat will also 
be removed through active ventilation, open doors, and open windows.  
 
The used symbols in Figure 1 are as follows [vLe17]: 
 

• 𝑇𝑇𝑧𝑧 the interior zone temperature 
• 𝑇𝑇𝑓𝑓 the average floor heating surface temperature 
• 𝑅𝑅𝑓𝑓 the resistance between the floor heating and interior zone thermal mass 
• 𝐶𝐶𝑓𝑓 the capacitance of the floor heating thermal mass 
• 𝐶𝐶𝑧𝑧 the capacitance of the zone thermal mass 
• 𝑅𝑅𝑒𝑒 the thermal resistance between the zone thermal mass and the ambient 
• 𝐴𝐴𝑤𝑤 the effective window area on the south side of the building 
• 𝑞𝑞𝑠𝑠 incident total solar energy on the southern vertical building plane 
• 𝑞𝑞gain,sol  the solar energy gain of the interior zone, i.e. 𝑞𝑞gain,sol = 𝐴𝐴𝑤𝑤 ⋅ 𝑞𝑞𝑠𝑠 
• 𝑞𝑞ℎ heating energy from an external source (e.g. heat pump) to the floor heating 
• 𝑞𝑞trans  heat loss by transmission through the exterior walls and windows 
• 𝑞𝑞gain  thermal gains by people and appliances 
• 𝑞𝑞vent , 𝑞𝑞inf  heat loss by ventilation and infiltration air streams. 

 
The aforementioned model can be translated into an equivalent electrical circuit with resistances and 
capacitors to study the interactions. Herein, the voltage is replaced by temperature and the current by 
heat flow. The resistances represent the physical elements that prevent heat transfer, whereas the 
capacitors model heat storage. The latter can be in the form of air, building materials, furniture, etc. 
Typically, it is assumed that static building parameters can be obtained from building documents and/or 
learning models based on observations. These are the following parameters: Resistances 𝑅𝑅∗, 
capacitances 𝐶𝐶∗, and window areas 𝐴𝐴∗. Furthermore, ambient temperature 𝑇𝑇𝑎𝑎  can be obtained from 
historical meteorological measurements and weather forecasts. 
 
A heating system often comprises of at least one heat source (Section 3.2), often piping, and elements 
to transfer heat to the air. The latter often happens using radiators or a floor heating system. But 
alternative heating systems also exist, such as electric heaters or infrared panels, which do not need 
piping and hot water flows to transfer the heat form the source to the zone. Also, for these heating 
elements, the capacity and resistance values can often be obtained directly or through calculations of 
the specifications of technology used. 
 
Creating an equivalent circuit model results in a white-box model, in which all interactions are described. 
This allows the model to be easily modelled in simulation tools like TRNSYS, SIMULINK, or DEMKit 
[Hoo19]. Yet, different degrees of freedom concerning complexity is possible. Van Leeuwen surveyed six 
different of these white box models, depicted in Figure 3.2. 
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Figure 3.2: Thermal network representations [vLe17] 

 
Based on various simulation and use-case studies, the first 2R2C model displayed in Figure 3.2 seems to 
provide a rather good accuracy for practical usage [vLe17]. Its limited complexity reduces the simulation 
times, making it useful for model predictive control. Furthermore, the more complex models have many 
parameters that need to be either calculated or learned. With various sources of unpredicted 
disturbances in real life, e.g. open doors and windows, the theoretical benefits of these more accurate 
models may also be nullified when applied in practice. 
 
Van Leeuwen has performed extensive validation of the top 2R2C model in comparison to more 
sophisticated TRNSYS models. Here, the parameters of the model are estimated using a minimization 
optimization formulation using only the measured indoor temperature (𝑇𝑇𝑧𝑧) as a reference. The results 
in Figure 3.3 show that the output of the model (𝑇𝑇𝑧𝑧_𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) is accurately following the outcomes of 
the TRNSYS model. Furthermore, Van Leeuwen finds that the 3R3C model is the most accurate overall, 
but for the 2R2C model parameters can be obtained directly from physical properties [vLe17]. 
Furthermore, building parameters for various types of Dutch houses are provided by [vLe17]. 

 
Figure 3.3: Thermal model validation [vLe17] 
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Furthermore, for practice, data may not be available for all parameters and therefore need to be 
estimated automatically by e.g., machine learning methods. In such a setting, the interaction that 
parameters have on each other may lead to ill-fitting and tuning of parameters when used in grey-box 
models or hybrid models. Hence, The 2R2C-model is seen as a workable and sensible trade-off in the 
context of both studying and implementing benefits of utilizing electricity-to-heat flexibility within the 
energy transition. 

Modelling heat gain and loss components 

As specified, many sources add and subtract heat energy from a room. These are the parameters 
indicated by 𝑞𝑞∗. This subsection outlines all these sources, except for the heat energy added by a heating 
device and/or system, which is be explained in Section 3.2. Furthermore, many gains depend on human 
presence and behaviour and follow from their comfort constraints. Models to obtain these required 
profiles and input with regards to user interaction will be outlined in Section 3.4. 
 
Ventilation: 
Air within a house needs to be refreshed over time to keep the indoor CO2 levels at acceptable levels. 
The rate at which air is refreshed is expressed by the air change rate (ACR), which is defined as the ratio 
of entire interior volume that is refreshed per hour. Different variants of ventilation exist, such as passive 
ventilation and active ventilation, of which different sub-types exist. With passive ventilation the ACR 
depends on human behaviour of opening vents, wind force and direction and air pressure differences. 
This adds many unknowns and complexity to the model. Therefore, we limit the scope to active 
ventilation methods in this section, as they are common in newer houses and allow for more exact 
control over ventilation modelling. The heat loss due to ventilation can be calculated as follows: 
 

𝑞𝑞vent = 𝐴𝐴𝐶𝐶𝑅𝑅 ⋅ 𝑉𝑉𝑎𝑎𝑝𝑝𝑝𝑝,𝑝𝑝 ⋅
𝑝𝑝

𝑇𝑇𝑇𝑇 ⋅ 𝑅𝑅𝑅𝑅
⋅ 𝑐𝑐𝑝𝑝,𝑎𝑎𝑝𝑝𝑝𝑝 ⋅ (𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑧𝑧) 

 
Herein, 𝑉𝑉𝑎𝑎𝑝𝑝𝑝𝑝,𝑝𝑝 is the interior air volume, 𝑝𝑝 is the ambient air pressure, 𝑅𝑅𝑠𝑠 the specific gas constant of air, 
and 𝑐𝑐𝑝𝑝,𝑎𝑎𝑝𝑝𝑝𝑝 =  1.005 [𝑘𝑘𝑘𝑘/𝑘𝑘𝑘𝑘 𝐾𝐾] the specific heat of air. However, another model exists with less 
parameters: 

𝑞𝑞vent = 𝜙𝜙𝑣𝑣 ⋅ 𝜌𝜌𝑎𝑎𝑝𝑝𝑝𝑝 ⋅ 𝑐𝑐𝑝𝑝,𝑎𝑎𝑝𝑝𝑝𝑝 ⋅ (𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑧𝑧) 
 

Where 𝜑𝜑𝑣𝑣 is the ventilation air flow schedule in [𝑚𝑚3/ℎ] and 𝜌𝜌𝑎𝑎𝑝𝑝𝑝𝑝 = 1.25 [𝑘𝑘𝑘𝑘/𝑚𝑚3] is the air density. It is 
important to note here that the ventilation air schedule depends on the persons in a house and also 
their activities. We will elaborate on how to obtain good schedules in Section 3.4. Note that the losses 
due to ventilation are heavily dependent on the system used, where heat recovery systems require a 
substitution of 𝑇𝑇𝑎𝑎 with an efficiency factor. 
 
Solar gains: 
Heat gain through solar  𝑞𝑞𝑠𝑠 depends on the solar irradiation multiplied by the area of a window 𝐴𝐴𝑤𝑤  [𝑚𝑚2]: 
 

𝑞𝑞𝑔𝑔𝑎𝑎𝑝𝑝𝑝𝑝,𝑠𝑠 = 𝑞𝑞𝑠𝑠𝐴𝐴𝑤𝑤 
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Here, 𝑞𝑞𝑠𝑠 [𝑊𝑊/𝑚𝑚3] can be obtained from the solar irradiation (measured, historical or forecasts) on a 
plane considering the orientation of the window, given by the inclination and azimuth. This can be 
calculated using equations presented by Duffie [Duf80] and Erbs [Erb82]. 
 
The window surface can be obtained from building properties. However, different windows have 
different shading coefficients, blocking some of the sun irradiance. Typical shading coefficients (𝑆𝑆𝐶𝐶) are 
provided by ASHRAE [ASH13] and window manufacturers. However, window manufacturers have 
shifted towards the use of the Solar Heat Gain Coefficient (𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶), and therefore an approximate 0.87 
multiplication conversion must be applied [ASH13]. Hence for the  solar gains, the following equation is 
used: 

𝑞𝑞𝑔𝑔𝑎𝑎𝑝𝑝𝑝𝑝,𝑠𝑠 = 𝑞𝑞𝑠𝑠 ∙ 𝐴𝐴𝑤𝑤 ∙  𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶 ∙ 0.87  
 
Note that the contribution of each window can be considered individually. South-faced facades of 
windows, such as used at the Dutch demonstrator Vriendenerf, have a significant contribution to the 
heat demand. In these buildings, the design and architecture is optimized to cleverly utilize the free heat 
provided by the sun in winter and often also block sunlight in summer to avoid overheating. 
 
Other heat gains: 
Two sources of heat gains remain: Those of active devices that convert another energy carrier (e.g., 
electricity) into heat and the contribution by humans in a room. The former can be obtained by applying 
a constant efficiency factor to the energy usage of a device [ASH13]. Next to this, each adult body 
contributes approximately 120W when being idle, and children approximate to 97W. To ease the model, 
we do not consider other activities, that raise the heat emissions. Although these gains can be modelled, 
they heavily depend on human behaviour. 

Domestic hot water usage 

Another significant portion of demand for heat is domestic hot water (DHW) usage. Often, hot water is 
also provided by the same devices that perform space heating, and so the interaction of electricity-to-
heat devices also depends on DHW. Similarly to subsection 3.1.2, DHW usage also depends on human 
behaviour. Hence, here we presented the theoretical model, whereas Section 3.4 will provide the 
necessary input derived from human presence and activities. 
 
Dominant factors in DHW usage are tap water usage for washing, showering, bathing and cleaning. 
However, in some cases it can also be used by whitegoods machines, such as hot fill washing machines. 
Differently than heating demand for space heating, DHW usage does not so much depend on the season 
and therefore remains rather constant throughout the year. However, the exact timing of DHW use is 
much harder due to human behaviour and the fact that DHW requests are often short in time duration, 
typically a couple of minutes. Hence, intermediate buffering is advised for flexibility applications. 
 
Generally speaking, DHW demand �̇�𝑄𝑝𝑝ℎ𝑤𝑤,ℎ can be modelled as follows: 
 

�̇�𝑄𝑝𝑝ℎ𝑤𝑤,ℎ = 𝜙𝜙𝑝𝑝 ⋅ 𝜌𝜌𝑤𝑤 ⋅ 𝑐𝑐𝑤𝑤 ⋅ (𝑇𝑇ℎ𝑤𝑤 − 𝑇𝑇𝑝𝑝𝑤𝑤) 
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Where 𝜙𝜙𝑝𝑝 is the flow of demand in [𝐿𝐿/𝑅𝑅], 𝜌𝜌𝑤𝑤 the specific density of water, 𝑐𝑐𝑤𝑤 the specific heat of water, 
𝑇𝑇ℎ𝑤𝑤 the hot water supply temperature, and 𝑇𝑇𝑝𝑝𝑤𝑤 the cold water supply temperature. It is important to 
notice that the flow can be obtained through measurements. Van Leeuwen [vLe17] shows that this can 
also be approximated for an aggregation of multiple houses using a set of Gaussian distribution 
functions. This approach results in the DHW demand shown in Figure 3.4. The overall shape (green) 
follows actual measurements (blue) and trends accurately. Section 3.4 presents an alternative approach 
to generating the DHW demand based on occupancy profiles. 
 

 
Figure 3.4: Approximated DHW demand [vLe17] compared to other literature [Blo07], source [vLe17] 

3.2 Heat generation device models  

Heat pumps 

The mathematical modelling of heat pumps (HPs) is generalised, despite of various existing technologies 
for heat sources and sinks. The thermal power delivered by the HP is defined by eq. (1). The temperature 
of the heat transfer fluid (HTF) flowing out of the HP (𝑇𝑇𝑝𝑝𝑜𝑜𝑝𝑝) depends upon the temperature of the HTF 
into the heat exchanger of HP (𝑇𝑇𝑝𝑝𝑝𝑝), nominal flow rate of HTF (�̇�𝑚𝑠𝑠) and operating power of the HP (𝑃𝑃𝐻𝐻𝐻𝐻) 
(eq. (2)). To maintain constant flow rate of HTF (�̇�𝑚𝑠𝑠), Δ𝑇𝑇 is maintained constant during the operation of 
the HP. The HP will stop operating automatically when Δ𝑇𝑇 is less than its operational limit.   

 
 �̇�𝑄ℎ𝑒𝑒𝑎𝑎𝑝𝑝 = 𝐶𝐶𝐶𝐶𝑃𝑃 ∙ 𝑃𝑃𝐻𝐻𝐻𝐻 [W] eq.(1) 

 𝑇𝑇𝑝𝑝𝑜𝑜𝑝𝑝 − 𝑇𝑇𝑝𝑝𝑝𝑝 = Δ𝑇𝑇 =  
�̇�𝑄ℎ𝑒𝑒𝑎𝑎𝑝𝑝
�̇�𝑚𝑠𝑠𝐶𝐶𝑤𝑤

 

 
[kg/s] eq.(2) 

 
�̇�𝑚𝑠𝑠 = flow rate of heat transfer fluid through HP for thermal power delivery [kg/s] 
�̇�𝑄ℎ𝑒𝑒𝑎𝑎𝑝𝑝 = rate of heat energy delivered by HP [J/s] 
𝐶𝐶𝐶𝐶𝑃𝑃 = coefficient of performance of HP 
𝑃𝑃𝐻𝐻𝐻𝐻= electrical power of HP [J/s] 
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Herein, it is important to mention that the COP depends also on the temperature of the source. 
Especially with air source heat pumps the ambient temperature (𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝) has an important impact, 
together with the efficiency of the Carnot cycle (𝜂𝜂𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝): 
 

𝐶𝐶𝐶𝐶𝑃𝑃 =  𝜂𝜂𝑝𝑝𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ∙
𝑇𝑇𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑇𝑇𝑠𝑠𝑜𝑜𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝
 

 
Using TRNSYS (version 17), a thermal and fluid flow simulation model was constructed utilizing the 
specifications and weather data from the Gdańsk, Poland (see Figure 3.5). Within this model, an air-
source heat pump with a 1 cubic metre water tank for domestic hot water was modelled with a usage 
profile obtained from a multifamily building. The model is a single-stage air-to-water heat pump is based 
on user-supplied data files containing catalogue data for the capacity (for the water), and power, based 
on the entering water and air temperature to the heat pump. Performance data for the Air-Water Heat 
Pump (type 941) are listed in Table 3.1 below and depicted in Figure 3.6: 
 

Table 3.1: Heat pump model performance 
Fraction of Capacity Fraction of Power T_air_in T_water_in 

0.759 0.787 2.2 25 
1.080 0.868 7.2 25 
1.137 0.843 12.2 25 
1.233 0.843 15 25 
1.403 0.844 20 25 
0.737 0.860 2.2 30 
1.048 0.938 7.2 30 
1.106 0.923 12.2 30 
1.199 0.924 15 30 
1.359 0.924 20 30 
0.714 0.944 2.2 35 
1.017 1.044 7.2 35 
1.075 1.016 12.2 35 
1.165 1.017 15 35 
1.314 1.018 20 35 
0.692 1.027 2.2 40 
0.986 1.136 7.2 40 
1.043 1.108 12.2 40 
1.131 1.109 15 40 
1.269 1.112 20 40 
0.670 1.132 2.2 45 
0.955 1.255 7.2 45 
1.012 1.224 12.2 45 
1.097 1.226 15 45 
1.224 1.229 20 45 
0.648 1.249 2.2 50 
0.923 1.385 7.2 50 
0.981 1.352 12.2 50 
1.062 1.355 15 50 
1.180 1.359 20 50 
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Figure 3.5: Layout of TRNSYS 17 with Air-Water Heat Pump and tank 

 
 

 
Figure 3.6: Results of simulation in TRNSYS 17. Chart of temperatures and flows in hydronics cycle 

 

Electric boilers 

Electric boilers (EB) can be modelled as the resistive heating element with constant impedance 
load [Sin17]. Heat delivered by EB is given by eq.(3). 

�̇�𝑄ℎ𝑒𝑒𝑎𝑎𝑝𝑝,𝐸𝐸𝐸𝐸 =
𝜂𝜂

100
𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝2

𝑉𝑉𝑝𝑝,𝑎𝑎
2 𝑃𝑃𝑒𝑒𝑎𝑎 [W] eq.(3) 
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�̇�𝑄ℎ𝑒𝑒𝑎𝑎𝑝𝑝,𝐸𝐸𝐸𝐸= rate of heat delivered from EB 
𝜂𝜂= Efficiency of EB [%] 
𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝= voltage at point of coupling of EB 

𝑉𝑉𝑝𝑝,𝑎𝑎= rated operating voltage of EB 
𝑃𝑃𝑒𝑒𝑎𝑎= operating power of EB [W] 

3.3 Thermal storage models 
Heating system’s storage capabilities can be a promising source of flexibility to the electricity grid 
through power-to-heat options. Different methods exist, with a dominant separation between sensible 
heat storage and latent heat storage methods.  

The amount of heat stored is based on the thermal capacitance of the material, overall heat transfer 
coefficient of material, and temperature difference between the material as shown in eq. (4) 

𝑄𝑄𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 =  𝑚𝑚𝐶𝐶𝑝𝑝∆𝑇𝑇 eq.(4) 

𝑄𝑄𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝= heat energy stored as sensible heat [J] 
𝑚𝑚= mass of material [Kg] 
𝐶𝐶𝑝𝑝= specific heat capacity of the material [J/kg.K] 
∆𝑇𝑇= change in temperature of the material [K] 

Storage of thermal energy in terms of sensible heat requires a large storage size. However, higher 
temperature storage is possible with sensible heat storage.  

Sensible heat storage 

Hot water buffer vessels are often used to store sensible heat for DHW usage, but sometimes also for 
space heating purposes. These systems often consist of a large insulated buffer tank that contains hot 
water and an inlet and outlet. The outlet allows hot water to flow out on demand, which is useful for 
especially DHW usage. The inlet allows the water volume to be topped up. Two methods are possible, 
either the buffer is refilled using hot water from e.g., a heat pump, or cold water is added and 
subsequently heated in the buffer. Figure 3.7 below shows a schematic drawing of the latter system 
[vLe17]. 

 
Figure 3.7: Schematic overview of a thermal storage [vLe17] 
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Herein, 𝐶𝐶𝑝𝑝 is the thermal energy charged to the buffer from a heat source as described in Section 3.2, 𝐷𝐷𝑝𝑝 
is the discharge of thermal energy, 𝐿𝐿𝑝𝑝 the loss of energy to the environment in time interval 𝑡𝑡. Various 
temperatures are included, of which the average temperature of the water in the tank 𝑇𝑇𝑎𝑎𝑣𝑣,𝑝𝑝 is the most 
important one, and the others denoting observable temperatures related to the heat system. In this 
example, the direct electricity-to-heat coupling is also visible with the heat pump (HP) taking electricity 
𝐸𝐸𝑝𝑝 to produce thermal energy 𝐶𝐶𝑝𝑝.  
 
Different models exist in literature, ranging from white-box models, to black-box models and includes 
also machine learning methods [Goe19, Lee17, Rid14, Spil21]. For sake of understanding, we first 
introduce a simple linear model and subsequently briefly introduce two simple alternative models that 
allow the model stratification and mixing behaviour of water in the buffer. 
 
Linear model: 
Using a simple linear model, the following relations concerning the operation of the buffer can be 
described [vLe17]: 

 
Δ𝑆𝑆𝑝𝑝 = 𝐶𝐶𝑝𝑝 − 𝐷𝐷𝑝𝑝 − 𝐿𝐿𝑝𝑝
𝑆𝑆𝑝𝑝 = 𝑆𝑆𝑝𝑝−1 + Δ𝑆𝑆𝑝𝑝

 

 
Here Δ𝑆𝑆𝑝𝑝 is the change of stored energy within a time interval 𝑡𝑡, and 𝑆𝑆𝑝𝑝 the stored energy at time 𝑡𝑡. The 
maximum energy that can be stored (𝑆𝑆𝑎𝑎𝑎𝑎𝑚𝑚) can be obtained using the following equation: 

 
𝑆𝑆𝑎𝑎𝑎𝑎𝑚𝑚 = 𝑉𝑉 ⋅ 𝜌𝜌 ⋅ 𝑐𝑐𝑝𝑝 ⋅ (𝑇𝑇𝑎𝑎𝑎𝑎𝑚𝑚 − 𝑇𝑇𝑝𝑝) 

 
Where 𝑉𝑉 is the volume in [𝐿𝐿], 𝜌𝜌 the specific density of water, 𝑐𝑐𝑝𝑝 the specific heat of water in [J/kg K],  
𝑇𝑇𝑎𝑎𝑎𝑎𝑚𝑚 the maximum temperature, and 𝑇𝑇𝑝𝑝 the inlet temperature. The latter we assume to be constant 
over time. As a result, the state of charge 𝑆𝑆𝑆𝑆𝐶𝐶𝑝𝑝 at time 𝑡𝑡 of a buffer can also be defined: 
 

𝑆𝑆𝑝𝑝𝐶𝐶𝑡𝑡 =
𝑆𝑆𝑝𝑝
𝑆𝑆𝑎𝑎𝑎𝑎𝑚𝑚

, 0 ≤ 𝑆𝑆𝑝𝑝𝐶𝐶𝑝𝑝 ≤ 1 

 
Based on the heat demand 𝐷𝐷𝑝𝑝 the thermal energy withdrawn from the buffer can be obtained as follows: 
 

𝐷𝐷𝑝𝑝 = Δ𝑡𝑡 ⋅ 𝜙𝜙𝑝𝑝 ⋅ 𝜌𝜌 ⋅ 𝑐𝑐𝑝𝑝 ⋅ �𝑇𝑇𝑝𝑝𝑝𝑝,𝑝𝑝 − 𝑇𝑇𝑝𝑝,𝑝𝑝� 
 
Where 𝜙𝜙𝑝𝑝 is the flow of water, 𝑇𝑇𝑝𝑝𝑝𝑝,𝑝𝑝 the observed temperature at the outlet, and 𝑇𝑇𝑝𝑝,𝑝𝑝 the inlet 
temperature at time 𝑡𝑡. 
 
Multi-layered stratified model: 
The linear model is very simple, however. In practice, stratification occurs, resulting in multiple layers of 
heat, of which only a limited number of levels have enough heat. Modelling stratification behaviour is 
important to maximize the heat usage [Ros01]. An overview of stratification models is reported by 
[Han12]. However, heat losses due to stratification are just as important, which is a topic surveyed by 
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[Fan12]. Experiments by [vLe17] also show the stratification effect when discharging a buffer at constant 
flow rate, see Figure 3.8. 
  

 
Figure 3.8: Observed outflow temperature over time when discharging a buffer at constant rate [vLe17] 
 
Here, three layers or zones can be observed. A hot layer, a cold layer and an intermediate mixed layer. 
Each of these layers has a time variable volume and temperature. Since only the hot layer is of interest 
as it contains the usable thermal energy, a simplification is presented by [vLe17] which includes only two 
layers. Here, the hot layer is denoted by volume 𝑉𝑉ℎ,𝑝𝑝 and temperature 𝑇𝑇𝑎𝑎𝑎𝑎𝑚𝑚. The other layer is a mixed 
layer with the remaining volume 𝑉𝑉 − 𝑉𝑉ℎ,𝑝𝑝 and average temperature 𝑇𝑇𝑤𝑤,𝑝𝑝. A schematic drawing of such a 
model is depicted in Figure 3.9. 

 
Figure 3.9: Multi-layer buffer model [vLe17] 

 
With this model, 𝑉𝑉ℎ,𝑝𝑝 becomes dependent on the SoC and hence can be obtained as follows: 

𝑉𝑉ℎ,𝑝𝑝 = 𝑉𝑉 ∙ 𝑆𝑆𝑆𝑆𝐶𝐶𝑝𝑝 
 
The stored thermal energy 𝑆𝑆𝑝𝑝 at time 𝑡𝑡 can be obtained as follows: 
 

𝑆𝑆𝑝𝑝 = 𝜌𝜌 ⋅ 𝑐𝑐𝑝𝑝 ⋅ �𝑉𝑉ℎ,𝑝𝑝 ⋅ (𝑇𝑇𝑎𝑎𝑎𝑎𝑚𝑚 − 𝑇𝑇𝑝𝑝) + �𝑉𝑉 − 𝑉𝑉ℎ,𝑝𝑝� ⋅ �𝑇𝑇𝑤𝑤,𝑝𝑝 − 𝑇𝑇𝑝𝑝�� 
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Further details for this model can be found in Section 4.3 of [vLe17]. Next to this simplified model, it may 
be useful to introduce more layers for large storage systems as applied in district heating systems. A 
novel approach is presented by De Goeijen [Goe19], where an Integer Linear Programming model is 
created to operate an EcoVat, a large seasonal underground vessel. Here, multiple heat sources are 
attached to a large underground water tank using heat exchangers, allowing for maximum efficiency 
and electricity-to-heat integration, coupled with seasonal storage. 
 
Diffusion Buffer (DiBu) model: 
One observation of the experiments by [vLe17] is that the behaviour of a buffer is similar to that of other 
storage devices, such as electrical storage. Homan et al. [Hom18] have developed a novel model based 
on diffusion of energy within a buffer. It consists of 4 separate stages and equations, see Figure 3.10: 
 

 
 

Figure 3.10: Four stages of the DiBu model. Source [Hom20] 
 
Except for the Idle after discharge state, the behaviour of the stages can be modelled using the linear 
equations as presented before. Homan does however present more advanced models based on external 
observations in [Hom20]. The idle after discharge state adds the possibility to model the mixing of water. 
This is modelled using the following equation using the observed temperature 𝑇𝑇𝑝𝑝: 
 

𝑇𝑇𝑝𝑝 = 𝑇𝑇𝑝𝑝′ + 𝑇𝑇𝑎𝑎𝑎𝑎𝑚𝑚′ − 𝑇𝑇𝑝𝑝′ ∙ (1 − 𝑒𝑒
− 𝑝𝑝−𝑝𝑝′
𝛽𝛽(𝑝𝑝−𝑝𝑝′)+𝛾𝛾) 

 
Here 𝑇𝑇𝑝𝑝′ is the observed temperature at the start of the idle after discharge state at time 𝑡𝑡′, 𝑇𝑇𝑎𝑎𝑎𝑎𝑚𝑚′ the 
maximum observed temperature during the discharge state, 𝛽𝛽 and 𝛾𝛾 are storage specific parameters. 
We refer to Homan [Hom20] for more details on this model. Therein it is also explained how the 
necessary parameters for this model can be obtained from measurements for electrical storage systems. 
It is expected that thermal buffers can be characterized in a similar way and perhaps online using data 
analytics and machine learning. 

PCM storage devices 

Latent thermal storage (LTS) technologies can be an interesting alternative to sensible heat type storages 
due to the former’s higher energy storage densities, which are better suitable for demand response (DR) 
applications in distribution grids for capacity relief, or on the electricity market for balancing. However, 
the existing energy models are not capable of representing the rate of energy exchange inside the 
storage tank due to interdependencies of heat transfer coefficient and temperature difference between 
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heat transfer fluid and phase change material (PCM), which is an important factor for finding the energy 
stored and transferred at any point in time. This work presents detailed modelling using average and 
discretized methods for PCM based storage systems. The proposed models can capture the heat system 
dynamics which can further enhance energy flexibility. In addition, the deployment of LTS can 
consequently reduce the heat pump’s size and thereby costs. 
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Figure 3.11: Methods of thermal energy storage as sensible and latent heat 

Latent heat storage stores thermal energy without significant temperature changes in the storage 
material. However, it involves the phase change of the material. The capacity of latent heat storage is 
determined using eq. (5). Heat storage in the form of latent requires smaller volume as the latent heat 
is much greater than the specific heat of the same substance. In some of the material with added 
impurities, the temperature of liquification and crystallization during latent heat process is different as 
seen in Figure 3.11 (b) 

𝑄𝑄𝑝𝑝ℎ𝑠𝑠 =  𝑚𝑚𝐿𝐿 eq.(5) 

𝐿𝐿= latent heat [J/kg] 
𝑚𝑚= mass of the material [kg] 
𝑄𝑄𝑝𝑝ℎ𝑠𝑠= capacity of latent heat storage [J] 

The amount of energy store in the phase change material (PCM) can be derived from the eq.(6) 

𝑄𝑄𝑝𝑝𝑝𝑝𝑎𝑎 =  𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎[𝐶𝐶𝑝𝑝𝑠𝑠�𝑇𝑇𝑎𝑎 − 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝� + 𝛽𝛽∆𝑞𝑞 + 𝐶𝐶𝑝𝑝𝑝𝑝�𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑓𝑓 − 𝑇𝑇𝑎𝑎�] eq.(6) 

𝛽𝛽= melt fraction  
𝐶𝐶𝑝𝑝𝑝𝑝= specific heat of PCM in liquid phase [J/kg.K] 
𝐶𝐶𝑝𝑝𝑠𝑠= specific heat of PCM in solid phase [J/kg.K] 
∆𝑞𝑞= latent heat of fusion of material [J] 
𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎= mass of PCM material [kg] 
𝑄𝑄𝑝𝑝𝑝𝑝𝑎𝑎= storage capacity of PCM [J] 
𝑇𝑇𝑎𝑎= melting temperature of PCM [K] 
𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑓𝑓= final temperature of the PCM material [K] 
𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝= initial temperature of the PCM material [K] 
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The energy balance inside the PCM based thermal storage tank is shown in Figure 3.12.   

 

Figure 3.12:  Schematic of PCM storage tank with energy flow 
 
�̇�𝑚𝑝𝑝 = flow rate of heat transfer fluid for discharging storage tank [kg/s] 
�̇�𝑚𝑠𝑠 = flow rate of heat transfer fluid from source for charging storage tank [kg/s] 
�̇�𝑄𝑝𝑝ℎ𝑤𝑤 = rate of heat energy exiting tank to district heating [J/s] 
�̇�𝑄ℎ𝑒𝑒𝑎𝑎𝑝𝑝,𝑝𝑝𝑝𝑝 = rate of heat energy entering storage tank from source [J/s] 
�̇�𝑄ℎ𝑒𝑒𝑎𝑎𝑝𝑝,𝑝𝑝𝑜𝑜𝑝𝑝 = rate of heat energy exiting tank to source [J/s] 
�̇�𝑄𝐻𝐻𝐻𝐻𝐻𝐻 = rate of heat energy transfer in HTF [J/s] 
�̇�𝑄𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠= rate of heat loss to the environment [J/s] 
�̇�𝑄𝐻𝐻𝐶𝐶𝑃𝑃 = rate of heat energy transferred in PCM [J/s] 
�̇�𝑄𝑝𝑝𝑒𝑒𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝 = rate of heat energy entering tank as return from district heating [J/s] 
�̇�𝑄𝑝𝑝𝑎𝑎𝑝𝑝𝑡𝑡= rate of heat energy stored in tank [J/s] 
𝑇𝑇𝑎𝑎= ambient temperature [K] 
𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔 = average temperature of HTF in storage tank [K] 
𝑇𝑇𝐻𝐻𝐶𝐶𝑃𝑃 = temperature of HTF in storage tank [K] 
𝑇𝑇𝑠𝑠 = temperature of HTF from heat source for charging storage tank [K] 
𝑇𝑇𝑝𝑝 = Temperature of return HTF from heat sink [K] 

Based in energy balance as shown in Figure 3.12,  eq.(7) is derived. 

�̇�𝑄𝑝𝑝𝑎𝑎𝑝𝑝𝑡𝑡 = �(�̇�𝑄ℎ𝑒𝑒𝑎𝑎𝑝𝑝,𝑝𝑝𝑝𝑝 −  �̇�𝑄ℎ𝑒𝑒𝑎𝑎𝑝𝑝,𝑝𝑝𝑜𝑜𝑝𝑝� − ��̇�𝑄𝑝𝑝ℎ𝑤𝑤 − �̇�𝑄𝑝𝑝𝑒𝑒𝑝𝑝𝑜𝑜𝑝𝑝𝑝𝑝� − �̇�𝑄𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠] 

=  �̇�𝑄𝐻𝐻𝐶𝐶𝑃𝑃 + �̇�𝑄𝐻𝐻𝐻𝐻𝐻𝐻 
eq.(7) 

 
The detailed modelling using average and discretized methods for PCM based storage tank is presented 
in Annex A (9.1 and 9.2 respectively) 

3.3.1.1 Modelling of HP and PCM Storage in DigSILENT PowerFactory 

The implementation of user-defined dynamic models of HP, Control, and PCM Storage, in DigSILENT 
PowerFactory, is developed using DigSILENT Simulation Language (DSL). DigSILENT PowerFactory is a 
power systems simulation tool. DSL is a platform to design and simulate dynamic models used in electric 
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power systems. The implementation of various dynamic systems in a single simulation tool has the 
advantage of reducing simulation time while investigating demand response over a period. 

 

  

Figure 3.13: Block frame diagram of thermal system developed in PowerFactory 

The diagram of the complete thermal system developed in DSL - PowerFactory is shown in Figure 3.13. 
The thermal system consists of measurement units (supply voltage), schedule unit, thermal demand 
profile (thermal demand), PCM based storage system, heat pump unit, control unit for HP activation, 
feedback unit to maintain the temperature of HTF from HP and finally the electrical load to power 
system. These components are elaborated in more detail below.  

Measurement unit: Power system voltage at the point of coupling of HP (V_t) of HP is measured using 
the ‘supply voltage’ block. The ‘HP_control’ unit utilizes (V_t) as a part of demand response to regulate 
distribution system by allowing connecting or forced disconnection of the HP. The HP is allowed to 
connect only if the system voltage is greater than 0.95 pu (per unit voltage equivalent) and will be forced 
disconnect below 0.92 pu.  

Thermal demand profile: This block provides the characteristic profile of thermal energy supplied to the 
consumer (Q_DHW). 

Schedule unit: This unit provides the optimized schedule for thermal power delivery (Psch) from HP 
based on estimated demand and electricity price. The optimization is based on Chapter 5. 

Control unit: The control unit block (HP_Control) is an output block. It performs logical evaluation of 
temperature and voltage at the point of common coupling of the HP (V_t) to determine the On/Off 
operational status of HP (C_a) and thermal power generation (Pctrl). The control scheme of the heat 
pump is based on two control levels. The first level of control comes from the scheduling block and the 
output of this block is based on forecasts of the generation and demand through gathering of energy 
price information. The second level of control will manage the operation of HP with respect to state of 
energy of storage, HP dynamics, supply voltage and user’s priority. This two-level control ensures the 
reduction of forecasting errors through a feedback to first level from the second level control, and 
supports local node voltage regulation. 

Heat pump: This unit represents the HP dynamics as described in Section 3.2.1. 
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Operating temperature of HP: The output temperature of HP is maintained by the block ‘dT_Feedback’ 
unit. This is an inbuilt function of the HP which maintains the temperature difference between incoming 
and outgoing HTF. This unit continuously monitors the temperature of HTF from the bottom of the 
storage tank to the HP and sends the feedback (Tf) signal to determine the output temperature of HTF 
to the storage. This temperature difference helps to maintain the constant flow rate of the HTF. 

Load: This unit represents the electrical load of HP as active and reactive power to the power system. 

Storage:  this unit represents the PCM based thermal storage system. Two different model of storage 
can be selected based on the requirement. One is average model where, temperatures of HTF and PCM 
are uniform through the storage. The second is stratified model of storage where, temperatures of HTF 
and PCM are determined for each stratified layered of the storage. Output signal from the storage are: 
Tctrl- feedback of temperature for control, mod: working mode of storage (average or stratified), and 
Trhp-return temperature of HTF from bottom of the storage to HP. 

3.4 User preferences and constraints 
As indicated in Section 3.2, many thermal interactions involve user behaviour and preferences. The most 
obvious is the direct control a user has over its heating system: the thermostat setpoint. But also DHW 
usage has a significant influence on thermal energy demand. Next to these direct links, also the 
perceived comfort of the end-users must be taken into account when controlling heating systems, but 
also introduce the bandwidth of inherent thermal flexibility to the control system.  

Profile generation and occupancy 

We first start this Section with a brief introduction of user behaviour and occupancy profiles which form 
the basis of many energy related usage patterns in residential environments. Pflugradt [Pfl13] describe 
how psychological behaviour can be modelled and how this contributes to energy usage. This resulted 
in the Load Profile Generator1. However, this extensive model requires a lot of configuration to generate 
energy usage profiles. A simpler approach is presented by Hoogsteen et al. [Hoo16] that only uses high 
level input data and statistics to generate demand profiles. The resulting open-source Artificial Load 
Profile Generator (ALPG)2 resulted initially in accurate electricity demand figures for residential areas. 
Later, the work of Van Leeuwen [vLe17] was combined, resulting in a tool that exports files for both 
simulation of electricity demand and heat [Hoo17]. Therefore, the resulting ALPG output matches with 
the open variables from Section 3.2 and also ensures that the electricity and heat demand profiles 
match, whereas the dedicated input files preserve the nonlinear behaviour of heating in simulation 
studies. We briefly describe the ALPG generation steps with respect to the heat demand. 
 
The overall modelling is based on characteristics of the neighbourhood and its inhabitants. Therefore, 
the following main inputs are required: 

• Physical location of the neighbourhood; 
• Historical weather data; 
• Types of households including persona types. 

 
1 Loadprofilegenerator.de 
2 https://github.com/utwente-energy/alpg 
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Randomization using Gaussian functions is performed within predefined bounds to result in a mixed set 
of households and persons that follow the general statistics. From the input, a model is generated, in 
which the modelled persons perform a key role. 
 
The first simulation step is to determine the occupancy of each person in a household. These can be 
active (at home) and inactive (e.g., at work or sleeping). Only active persons can change the power 
consumption and DHW usage in a house. Using a process, power consumption is determined from this 
occupancy profile. This is done in a couple of distinct device classes. Each profile consists of a vector of 
values, where each element represents the activity in one discrete time step with a length of 1 minute. 
We refer to [Hoo16] for more details on this. Based on this occupancy profile and power usage, we can 
determine the necessary input for the space heating demand: 
 
Ventilation: 
The ventilation is directly based on the occupancy profile by multiplying the active persons in a house 
with a scalar to obtain the desired airflow in the house. Additionally, if a person is cooking, additional 
airflow is added to the model. This results in the following equation: 
 

𝑞𝑞𝑣𝑣𝑒𝑒𝑝𝑝𝑝𝑝 = max (300, 30 +  𝑁𝑁𝑝𝑝 ∙ 30 + 𝐶𝐶 ∙ 150) 
  
Where 𝑞𝑞𝑣𝑣𝑒𝑒𝑝𝑝𝑝𝑝 is given in [𝑚𝑚3/ℎ], 𝑁𝑁𝑝𝑝 is the active number of persons, and 𝐶𝐶 is a Boolean indicating that 
cooking equipment is active. 

Heat gains: 
Two important heat gains are those of human bodies and active equipment as outlined in Section 3.2. 
The added heat by active persons follows directly from the occupancy profile, where each user also has 
an age to determine the heat they add to the room. For the different device groups, the added heat to 
the zone is proportional to the electricity usage based on [ASH13]. The following scalars are used: 

Table 3.2: Device groups in the ALPG [Hoo16] 

Device group 𝒈𝒈 Scalar 𝒔𝒔𝒈𝒈 
Fridges 0.5 

Electronics 1.0 
Lighting 0.8 
Standby 1.0 

Other 0.3 
 

As a result, the electricity power consumption 𝑃𝑃𝑔𝑔,𝑝𝑝  at time 𝑡𝑡 for a group of devices 𝑘𝑘 can be translated 
into a heat gain 𝑞𝑞𝑔𝑔𝑎𝑎𝑝𝑝𝑝𝑝,𝑔𝑔,𝑝𝑝 given the scalar 𝑅𝑅𝑔𝑔: 

𝑞𝑞𝑔𝑔𝑎𝑎𝑝𝑝𝑝𝑝,𝑔𝑔,𝑝𝑝 = 𝑃𝑃𝑔𝑔,𝑝𝑝𝑅𝑅𝑔𝑔 

Thermostat setpoints 
From the occupancy profiles, also the desired thermostat setpoints can be derived. Each person has its 
own preference, which also depends on the age [vLe17]. The thermostat will be set to the maximum 
desired setpoint of all active persons in a household. Additionally, random events may be incorporated 
to test the effect of random behaviour of inhabitants on control systems. 
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Domestic hot water usage 
DHW usage is generated by Gaussian functions, similarly to the electricity use. For showering, each 
person has preferences (e.g., showering in the morning or evening) and an average shower time. Using 
randomization based on these Gaussian distributions, we derive moments of hot water usage and 
generate a profile that resembles the DHW energy usage each discrete time interval. 
 

Perceived comfort 

Evaluating thermal comfort mostly depends on how people feel about it. Models [ASH55, ISO7730] have 
been developed for thermal comfort, which can be evaluated using the Predicted Mean Vote (PMV) and 
Percentage of People Dissatisfied (PPD). From analysis, it is found that the desired operated temperature 
depends on the zone temperature and radiation from bodies in a room. This model is however complex, 
as it involves 6 thermal bodies. Another observation by [ISO7730] is that the perceived comfortable 
temperature depends on the ambient temperature. In general, a perceived comfortable indoor 
temperature can be 2 ℃ lower when the outdoor temperature is below 15 ℃. Next to this, fluctuations 
in indoor temperature should be limited as well according [ISO7730]. Periodic variations should be 
limited to 1 ℃ and the maximum rate of change should be no higher than 2 ℃ per hour. 
 
Next to the temperature, the relative humidity also impacts the perceived comfort. With respect to 
humidity, the ASHRAE Standard-55 2017 states that humidity control systems must be able to maintain 
a dew point temperature of 16.8 °C (62.2 °F) [ASH55]. However, the standard does not state any lower 
bound to the humidity level.   
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4 Use-cases 
This Chapter presents the practical situation within SUSTENANCE’s demonstration sites, the local 
context, and the possibilities, and the specific goals. This forms the basis to select the models that are 
required. Furthermore, this chapter provides input for Chapter 5 as the energy management strategy 
must align with the practical setup and context presented in this chapter. 

4.1 Denmark 

Local context 

Heating in Denmark is divided into 2 categories. Within cities district heating and natural gas is the 
dominating heating sources. And in the rural areas, outside the distribution areas of natural gas and 
district heating the dominating heat sources are pellets and oil.  
 
In 2020 it was politically decided that the natural gas grid in Denmark should be focused towards 
industrial high temperature applications, and as such the domestic heating should be moved to either 
district heating if applicable, or to heat pumps where district heating is not an option. Throughout 
Denmark there’s a lot of biogas production that is upgraded and fed into the natural gas distribution 
grid, and it is expected that Denmark within few years will have 100% biogas in the distribution grid.  
 
Currently there are around 100.000 heat pumps installed throughout Denmark, but this number is 
expected to increase to 500.000 within the next 8 years, and combined with an increasing number of 
EVs that need charging in the distribution system, local grid congestion is expected. 

 
Figure 4.1: Location of the Danish demonstrator site 

 
The location of the Danish demonstrator is depicted in Figure 4.1. Here, the 2 red bars on the map, 
indicate the supply lines to the area, and the circles mark the location of the 20 demonstration sites in 
the project. 
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The test site in the villages of Voerladegaard (Figure 4.2) and Dørup (Figure 4.3) are selected as it is a 
well-functioning community, far from neighbouring district heating plants and in a closed end of the 
electrical distribution grid. All the test houses have been selected on the criteria that they have fossil 
fuel (natural gas or oil) and that they have either PV on their house or own an electric vehicle (or plan 
to get it during the project).  
 

 
Figure 4.2: Voerladegaard 

 

 
Figure 4.3: Dørup 



101022587 – SUSTENANCE –H2020-LC-SC3-2018-2019-2020 / H2020-LC-SC3-2020-NZE-RES-CC 

 _ 

 

Page 29 of 78 

The Danish demonstrator has a significant variety in the houses used in the demonstration: 
- Heated areas from 90 to 250 m2. 
- Construction year from 1930 to 2010 
- Heating demand from 10.000 to 30.000 kWh 

Opportunities for market integration 

Over the recent years the energy market has become much more volatile as the portion of renewable 
energy increases. Generally the prices have increased during the past 2 years, and the fluctuations within 
the same day can sometimes be by several factors.  
 
Electricity for heat pumps is tax-free, and therefore are a good incentive for consumers to switch from 
taxed fuels like oil and gas to electricity. With the community energy management system, we will 
enable consumers and prosumers to benefit from each other. In a more imaged way, this would mean 
that the excess production from the Petersen household’s PV system can be used by the heat pump 
from the Hansen household, and they help relieve the stress on the distribution grid. Generally speaking 
the energy prices give an accurate representation of the grid-load at any given time. 

Demonstrator use-case 

In the Voerladegaard demonstration we will equip 20 households with a controllable heat pump that is 
combined with a thermal storage and possibly also a PV system. This will enable us to run an optimization 
algorithm that optimizes for the lowest operation cost. 

4.2 Netherlands 

Local context 

Heating in the Netherlands has been dominated by the use of natural gas since the discovery of vast 
deposits in the north of the Netherlands in the sixties. However, the increasing number of earth quakes 
in the province of Groningen have led to the decision to close down wells by 20243, depending on the 
geopolitical situation. As a result of this, newly build houses do not mandatory need to be built with a 
natural gas connection since 2018 [Ezk18] and new houses are built without natural gas since 2019 
[Kli19]. 
 
However, due to the dominance of natural gas usage for heating in the Netherlands, switching to heat 
pumps in existing areas may lead to severe grid congestion. The Netherlands has been underinvesting 
in its electricity grid in the last 10 years despite warnings from several experts4. To overcome problems, 
several experiments are conducted in residential areas to transition away from natural gas5. Hereby, 
insulation of in particularly older households may cause problems when shifting away from high 
temperature heating systems. Data analysis by Tado shows that the insulation of houses is at most 
mediocre6. Next to electrification, also district heating systems are extended to reduce the strain on the 
electricity grid. However, the monopoly of district heating systems in areas brings its own concerns, 

 
3 https://www.rijksoverheid.nl/onderwerpen/gaswinning-in-groningen/afbouw-gaswinning-groningen 
4 https://nos.nl/nieuwsuur/artikel/2446932-toezichthouder-negeerde-waarschuwingen-overbelast-
elektriciteitsnet 
5 https://www.rijksoverheid.nl/onderwerpen/aardgasvrije-wijken/bestaande-gebouwen-aardgasvrij-maken 
6 https://www.tado.com/gb-en/press/uk-homes-losing-heat-up-to-three-times-faster-than-european-neighbours 
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especially with respect to the climate agreements and goals. New legislation is being developed with the 
“wet collectieve warmtevoorziening 2” (English: law on collective heat supply 2). Herein it was recently 
decided that district heating infrastructure will be taken out of private hands and from 2031 onwards 
be collectively organized by governmental bodies [Jet22]. This decision is made to ensure that the energy 
transition can carry on and people are not excluded. More information on the heat transition as a result 
of the climate agreement can be found in [Kli19]. 
 
Use Case 1 – Energy community Vriendenerf in Olst 
Vriendenerf is a community of 12 houses and 1 common house located in the municipality of Olst-Wijhe 
as shown in Figure 4.4. These houses were constructed as per Zero Energy Building (ZEB) standards and 
have the following properties: 

1. 12 houses divided into groups of 3 as shown in Figure 4.5. 
2. 69 PV panels for each group of 3 houses. 
3. Each house is equipped with a heat pump, domestic hot water storage and ground source. 
4. Houses are fully insulated. 
5. Equipped with active air ventilation system. 
6. Houses are in the process of installing EV charging stations. 

 

 
Figure 4.4: Location of Vriendenerf, the Dutch demonstration site 

 

 
Figure 4.5: 4 groups of 3 houses and 1 common house 
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Current energy system in Vriendenerf: 
The PV panels produce 6400 kWh/year and 5600 kWh/year for a single corner house and a single in-
between house on average. Of this annual PV yield, it is estimated that annually 3500 kWh is used for 
heating, cooling, ventilation and domestic hot water production. While the houses in Vriendenerf are 
designated “Zero-on-the-Meter" (ZOM) or “Zero Energy Building” (ZEB), energy balancing guarantee is 
dependent on an average thermostat setting of 20 °C and on heating the 150 litres hot water storage 
tank once every 24 hours. The houses in Vriendenerf have been designed to minimize energy usage for 
heat generation. This has been achieved by three design decisions. 
 
Design decision 1 – High insulation: 
The houses in Vriendenerf are very well-insulated to minimize heat loss. The ground floors, outer walls 
and roof panels are have a heat resistance of 5 to 6m2.K/Watt and the windows are of a high quality, 
namely HR++.  
 
Design decision 2 – Innovative ventilation system 
Each house is equipped with a “balanced ventilation with heat recovery” system. This system extracts 
the heat from the hot air in the house, from spaces such as the kitchen and the bathroom to name a 
few. Then it uses this heat to pre-heat the incoming fresh air from outside. This results in a 30% reduction 
in the heat energy demand of each house. This “balanced ventilation with heat recovery” is illustrated 
in Figure 4.6. 
 

 
Figure 4.6: The “balanced ventilation with heat recovery” system implemented in each house 

 
Design decision 3 – Heat pump and ground heat exchanger network 
All houses have an innovative heat flow system as shown in Figure 4.7. This system consists of a heat 
pump which is connected on one end to a ground heat exchanger which acts as the heat source. On the 
other end, the heat pump is connected to an underfloor heating system which acts as the heat output 
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as well as a hot water buffer tank of 150 litres. During the winter, heat is extracted from the ground via 
the ground heat exchanger and used for underfloor heating. Conversely, in summer, the heat from the 
underfloor heating is dissipated into the ground via the ground heat exchanger.   
 

 
Figure 4.7: The heat pump, ground heat exchanger, warm water buffer tank and underfloor heating 

 
Specific goals of Vriendenerf are as follows: 

• Model heat-to-electricity systems and study their flexibility potential.   
• Develop and demonstrate the integration of heat-to-electricity systems into a smart Energy 

Management Systems (EMS). 
• Combine heat-to-electricity systems with batteries, electric vehicles and boilers to encourage a 

high-level of self-consumption within the energy community. 

Opportunities for market integration 

Peer-to-peer trading between customers and/or energy communities is not yet allowed, due to delayed 
implementation of the new Energy law in the Netherlands7 The network operators, which are TenneT 
(Transmission system operator (TSO)) and local distribution system operators (DSOs) are working in 
cooperation with policy makers and regulation authorities to design and operate the power grid in 
several markets. As a result, DSOs are investigating new tariff schemes for residential users (e.g., a 
bandwidth scheme8) and also local congestion markets are expected to emerge soon. Multiple public 

 
7 https://www.rijksoverheid.nl/documenten/publicaties/2021/11/26/wetsvoorstel-energiewet-uht 
8 https://tweakers.net/reviews/10360/all/betalen-per-kw-vermogen-nettarieven-op-basis-van-bandbreedte.html 
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bodies (e.g., DSOs and Agentschap Telecom (Telecom Authority)) are investigating solutions to maintain 
a reliable grid and supply of energy under extreme conditions (e.g., weather, cyber-attacks). As a result, 
aggregators will not only need to play on the national energy markets, but also within the local domain 
in the future. Next to the new energy law, also new legislation on collective heat systems will be 
implemented in 2024, resulting in changes for the electricity-to-heat systems as well [Jet22]. 
 
The localized nature provides an opportunity to solve congestion issues regarding electricity-to-heat 
systems in a communal manner. Therefore, we explore cooperative demand side management methods 
for energy and flexibility sharing. Opposed to a competitive ecosystem, we bring together stakeholders 
in an equal playing field. The upcoming energy law, based on EU Directive 2019/944, provides the legal 
framework for this. Furthermore, with the upcoming law on collective heat systems, new opportunities 
for energy communities regarding heating systems emerge in the Netherlands. Hence, a trend is seen to 
more localized solutions where citizens actively support the energy transition through sharing of energy 
locally within communities. 

Demonstrator use-case 

The goal for the demonstrator is to actively contribute to the energy transition in the Netherlands and 
the decarbonization. Hereby, reducing stress on the grid is an important aspect. Given the playfield being 
in transition as well, a hybrid digital setup is required that can evolve over time, using the existing assets. 
The emphasis will therefore be on an intelligent EMS that utilizes heat flexibility with three important 
aspects and drivers: 

1. The foreseen bandwidth model requires individual households to reduce their peak load. Hence, 
thermal flexibility must be used in cooperation with other smart domestic assets, such as electric 
vehicles and solar PV. Being individually in power is still important to inhabitants as well, 
regardless of their community efforts. 

2. Energy may be traded among the members of community through new legislation and local 
market frameworks, such as Entrnce9. Also market integration could be an option, but has less 
priority for the community. 

3. Congestion problems may arise in the Netherlands given the state of the electricity grid. Hence, 
it is expected that there may be demanded reduction of electricity use at times as indicated in 
USEF’s red phase [USEF21]. To this end, external requests, so called energy modii, will be 
developed.  

In order to execute this, the control system should have a layered structure, where both the individual 
households can set their own preferences and which can adhere to local (bandwidth) limits. A communal 
layer is required to coordinate the community efforts on a higher level of the grid and ensure community 
energy is used to trade on energy markets (be it global or local). On this level, requests from grid 
operators to temporarily reduce electricity use should also be incorporated. Hence a distributed 
consensus system seems a logical structure for this demonstrator. 

 
9 https://www.entrnce.com/communities-trading-energy 
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4.3 Poland 

Local context 

Predominantly, the Polish media marked is dominated by relatively low numbers of some local 
companies that are providing the media for the domestic use. At the Estate, where the demonstrator is 
located, there are a few city grids available, that provide utilities for the inhabitants. These are: 

• Water, operated by Aqua Sopot S.A. 
• Sewage, operated by Aqua Sopot S.A. 
• Gas, operated by PGNIG 
• Heat, operated by GPEC 
• Electricity, operated by Energa Operator 
• Telecom, operated predominantly by Vectra and UPC 

The grid of the utilities is available in the summary scheme in Figure 4.8; separate images are available 
in Deliverable 7.1. The main goal for this investment and modification is removal of the heating gas from 
the estates  
 

 
Figure 4.8: Grid of media lines available at the estate; colours according to legend, scale 1 : 500 

 

Opportunities for market integration 

There are few possibilities for the energy delivery to the buildings such as the demonstrator: either 
through the municipal network or by local in-house installations. This is a special case for the heating 
system, where in Sopot the energy can either be delivered from the municipal network (as in case of the 
polish demonstrator) or can be provided by local boiler houses belonging to particular estates or boilers 
that provide heating for particular buildings. In either case, the diversification of the energy sources (e.g 
natural gas or electricity) as well as having some independence would have become an added value. 
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Since the heating is outsourced completely, the only possibility to contribute to towards that energy 
would be on-site electricity production for either power electrical heaters or the natural gas boilers that 
still require an outsourced gas.  It is desired in long term to replace the natural gas completely as it is 
neither a “green” nor a “safe” energy carrier. 

Demonstrator use-case 

The demonstration activities in Poland comprise of the following activities and/or objectives: 
1. Concept and installation of measurement systems for data gathering of electrical grid, heat 

systems and water. 
2. Development of the local “energy island” concept, with community members engagement, 

techno-economic analysis and financing structure of such initiative. 
3. Installation, demonstration and testing of technologies for local electricity and heat production, 

EV (electric vehicles), energy storage and management for energy efficiency and increase in 
share of local RES, visibility and flexibility of the power grid. 

4. Development of legal solutions and business models for the proposed technological and 
organizational solutions enabling their development and dissemination. 

The Energy Management System for Polish case is designed to acquire electrical data from distributed 
energy resources and control energy storage system, V2G charging station and heat pumps. These 
energy resources and loads are placed in different locations around the housing estate. Because of that, 
the EMS system is designed as a decentralized, cloud-based system.  
 
Server-site service is the heart of the overall EMS system, performing the vast majority of calculations 
(prediction, optimization, aggregation, presentation), storing acquired data and provides end-user 
services, such as dashboards or remote control. Local iEMS controllers and global EMS (gEMS) service 
are communicated bidirectionally to exchange telemetric data and commands. This approach allows us 
to provide real-time balancing and overall flexibility for distributed energy nodes and easy expansion of 
the system as well. 
  
The Global EMS (gEMS), see Figure 4.9, will be integrated with two local iEMS controllers. Every iEMS 
individually control electrical system integrated behind the meter. In this case systems will consist as 
follows: 
 
POC 1 (EV):  

• Bi-directional EV charging station 
• Energy Storage System 

POC 2 (Mickiewicza 59): 
• Loads: elevator and public lighting 
• Heat pumps 
• PV installation 
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Figure 4.9: Planned topology of electrical and IT system. 

  
Originally the installation of a Vanadium Redox Flow battery was envisioned for the Polish demonstrator, 
but this was unavailable. Originally an energy storage system with a power of 5kW and capacity of 
30kWh was deemed to be sufficient to demonstrate the required features. In this case, since the VRFB 
battery technology is not available, a switch to a Li-Ion based energy storage system has been made with 
a higher installed capacity, a similar usable capacity, and comparable lifetime of the energy storage 
system. In this case it has been assumed the ESS with installed capacity of 50kWh Li-Ion battery working 
at 80% DoD will reach similar capacity requirement as assumed originally with the VRFB battery. Also, 
the lifetime of such a battery will meet the project’s requirements. 
 
The additional benefit of such a battery selection is the possibility to increase the power of ESS up to 
20kW. This will impact the flexibility of the system and add additional demonstration features to the 
SUSTENANCE project. 
  
The Global EMS system is designed to provide features, such as: 

• Peak shaving: ESS will be able to store energy produced by PV and discharge during peak 
demands. The aim is to perform energy flow forecasting to provide optimal charging and 
discharging scheduling and to reduce time of deep discharge and full charge of the ESS. The 
algorithm therefore takes battery degradation into account. 

• Peak shifting: The heat pump working schedule can be fitted into forecasted PV peak 
production to maximize self-consumption in the microgrid. 

• Minimization of energy costs: Through this feature the EMS can store energy during the 
energy price valleys to minimize energy consumption when energy is expensive. 

• EV charging support – ESS can be used as a support to provide EV fast charging even if AC grid 
power will be not sufficient to supply the charger. 
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• Taking part in global DSM: Thanks to the global iEMS, the whole system can be part of DSO 
Demand-Site Management and deliver services such as energy demand reduction. 

• Island mode: (on local iEMS level) The system could be set up as an energy island to provide 
off-grid power supply for selected loads. These loads could be supplied from energy storage 
and EV battery, thanks to the V2G possibilities. 

4.4 India 
Grid management in India started in the sixties and was done on a regional basis. Each state’s electric 
grid was inter-connected to that of the neighbouring states thus forming a regional grid 10. 5 separate 
regional grids existed, namely, Northern, Eastern, Western, North-eastern and Southern regions. In 
1991, the first efforts were made to connect these regional grids to one single national grid. By 2013, all 
the 5 regions were connected and a single synchronous national grid operating at 50Hz (tolerance band 
49.5Hz - 50.5Hz) emerged. India has a total installed capacity of 411.6 GW (January 2023) with around 
106 GW from wind and solar power. In India, air-conditioners (ACs) are responsible for a major share of 
the load. Letschert et al. [Let12] estimate that by 2030, the total electricity demand from ACs would 
increase to 239 TWh/year, translating into a peak demand of around 143 GW. The construction of nearly 
300 new coal fired plants for 500 MW each would be required to meet his huge demand if the additional 
AC load is to be met from coal-based sources only. With an increasing number of heatwaves pushing the 
temperature to and above 40 °C, the International Energy Agency expects India to account for one third 
of total worldwide AC sales by 205011. Phadke et al. [Pha13] state that by focusing efforts on improving 
AC efficiency, this electricity demand can be reduced by up to 40%, equivalent to avoiding the 
construction of 100 new power plants. Therefore, there is a critical need for research into efficient HVAC 
systems and the implementation of demand side management approaches to reduce the share of ACs 
in the residential and industrial load in India. While AC load forms a significant proportion of heat 
heating/cooling load, heat demand by industrial load also constitutes a reasonable share of the overall 
heating load.  
 
4.4.1 Indian Demonstration: 
 
In the Indian demonstrations under the SUSTENANCE project, multi-Utility Heat Pumps for rural 
applications will be capable of flexibly handling multiple utilities.  The cooling requirement can be 
decoupled with the heating or drying requirements with respect to time by suitably integrating thermal 
storage on cold and/or hot sites.   Multi-Utility Heat Pumps for Rural Applications can make the local 
processing of agricultural produce economically attractive, because of the high overall coefficient of 
performance (COP), while cogenerating cold and hot utilities.  It can also add value by drying the excess 
produce when the market realization is low.  These small capacity units can be deployed in rural 
households and can serve many applications.  They can help reduce post-harvest losses and contribute 
to the improved cold chain.  They will also enhance the livelihood of small and marginal farmers. 
 
IITB is developing a customised multi-utility heat pump for various applications in Barubeda site in 
Jharkhand state. The villagers have a reasonable number of cows, however, due to a lack of adequate 
storage/chilling facility, cow milk is largely underutilised and limited to only household consumption, 

 
10 https://www.powergrid.in/one-nation-one-grid 
11 https://www.iea.org/data-and-statistics/charts/global-air-conditioner-stock-1990-2050 
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despite having the potential to supply milk to the local market. Further, vegetables grown locally cannot 
be fully utilised due to their low shelf life and lack of storage. The multi-utility heat pump being 
developed by IITB for Barubeda site is expected to help the village inhabitants in drying and storing the 
vegetables, see Fig. 4.1. Based on the applications of multi-utility heat pump in Barubeda site, it is 
expected to act as a flexible load to the local Sustainable RE based energy system, and hence help in 
better and effective utilisation of renewable energy. 
 

 
Fig. 4.1 Multi utility heat pump for agro produce drying 
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5 Control and optimization methods 
The focus of this chapter is on the model and methods for optimization and control over heating devices. 
First on individual level, then on community level.  

5.1 State of the art control methods 
This section outlines control methods applied in both practice and those studied in scientific literature. 
These control methods range from reactive control, i.e. react on observations, to model-predictive 
based type of controllers. In this context, it is important to estimate the state of the system as often not 
variables required for control can be assessed directly though sensors. For model-predictive control, it 
is important to also estimate and forecast the future. Furthermore, (a collective of) controllers can work 
stand-alone or jointly coordinated. To this end we first describe agent-based control concepts to provide 
a theoretical framework in which we can place other concepts. 

Agent-based control 

Within control theory, agent-based control is a well-established concept. As control systems may 
become quite large, especially in the field of smart grids, it is important to add structure to the system 
such that subsystems can be developed stand-alone but be integrated in the larger system. An agent 
represents a control algorithm that optimizes the behaviour of a set of actuators. It does so based on 
external inputs, which could be information through ICT systems, but also preference of the end user. 
Based on this input, and the current state, it controls the actuator(s) accordingly. The advantage of this 
concept is that models are created locally and also information is stored and processed locally.  
 
In a local setting, in which there is no communication with external systems, the system works fully 
autonomously and only within the local context. This is typically the case for a house thermostat system, 
in which the thermostat controls the heating system and sometimes the generation of domestic hot tap 
water based on predefined setpoints by the end-user. However, for electricity-to-heat integration, these 
systems need to evolve into an agent-based system that takes external stimuli into account, such as 
electricity market prices. Hence, systems need to make trade-offs between comfort for the end-user 
and overall system efficiency.  

 
Figure 5.1. A multi-level agent-based system with bi-directional communication [Hoo17]. 
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Herein one can see the external stimuli or steering signals as coming from another agent (see Figure 
5.1), namely a higher-level steering agent that indirectly controls by influencing the lower-level 
decisions. Hence there is no direct control over actuators as such, but rather device agnostic signals are 
used to change the behaviour of lower-level agents. This level of abstraction with generic flows of 
information allows the system to become scalable and allows to easily integrate new technologies. 
Furthermore, information and models of the actual assets can remain within the low-level agents, hence 
complexity is limited as higher-level agents are not required to know and process this information. 
 
Next to only sending out steering signals, a higher-level agent could also be coordinating its children. 
Likewise reading of sensors, lower-level agents may also provide information back, such that the higher-
level agent can make informed decisions or perform coordinating tasks. Within this context, Transactive 
Energy [Gri15] is well known, in which bi-directional communication is leveraged to ensure that the 
response of lower-level agents is known to certain stimuli. This can be implemented using e.g. an auction 
model, and allows for the coordination among agents to ensure that steering signals do not lead to 
overreaction and system instability. This concept works for both reactive observation-based control as 
model-predictive and optimization based methods. Essential in both cases is to clearly define how and 
what information has to be exchanged, i.e. an interface definition is required. Note that these agents 
not necessarily need to be executed on a specific location and computer system. Instead, they may also 
be centralized in separate processes, yet they define a structure that is easy to extend. 

Dynamical model fitting 

This section discusses literature on models and methods to accurately estimate the state of a system 
when certain model inputs are not known due to lack of sensors. Furthermore, it describes literature to 
forecast energy demand based on e.g., historical data and weather forecasts. 
 
One of the important aspects of predicting what will be the load is the need for forecasts on the weather. 
The heat demand for the upcoming period can in theory be determined using weather forecasts, a 
sufficient model of the thermal envelope of buildings, and aspects of user behaviour and their desires. 
Many meteorological institutes provide weather forecasts and often here is not the bottleneck to 
predicting the heat demand. However, solar irradiation is an aspect that may be more problematic. Solar 
irradiance has a large impact on the heating of households through the windows.  Solar irradiation 
forecasting approaches fall in one of two categories; Dataset based approaches and Structure & 
Operation based approaches [Sing22]. Forecasting approaches based on datasets can be 1) time series 
dataset based or 2) meteorological/geographical dataset based or 3) a combination of these two 
approaches (hybrid dataset). With advancements in computing infrastructure, approaches based on 
structure and operation are finding frequent implementation as well. This category includes regression 
models, Markov chains, deep learning artificial neural networks (ANN) and support vector machines 
(SVM) based approaches. Specific examples of PV forecasting approaches are discussed in the next 
paragraph. 
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Prediction services such as Solcast12 and Forecast.Solar13 do provide data based on satellite images. In 
practical experiences [Nij22] they seem to be quite unreliable on cloudy days, however. There has been 
an increased application of machine learning and neural network models towards the problem of solar 
irradiation prediction, especially long short-term memory (LSTM) models. For example, Lee et al.  
[Lee18] propose a solar forecasting technique based on convolutional neural networks (CNN) and LSTM 
networks. Their approach can make accurate predictions with roughly estimated weather data and 
without requiring sophisticated pre-processing of the input data. The authors show that their CNN+LSTM 
approach out-performs traditional regression-based approaches for solar power forecasting. 
Simeunović et al. [Sim22] put forward two graph neural network models to achieve deterministic multi-
site PV forecasting called the graph convolutional long short-term memory (GCLSTM) and the graph 
convolutional transformer (GCTrafo) for a forecasting horizon of 6 hours ahead. Both models 
outperform traditional regression-based forecasting methods, showing promise for deep learning 
approaches in the field of PV forecasting. Utilizing live data from solar panels seems to open the 
possibilities to improve the predictions [Len22]. 
 
The thermal envelope of a household is just as important. Van Leeuwen [vLe17] has researched methods 
to learn the thermal envelope by using a grey-box model and applying linear regression methods. This 
seems to be a quite acceptable method, but so far is only tested in simulation. Other grey-box learned 
models are considered by Sonderegger [Son78], who determined parameters using measurements of a 
single room together with electric heaters. On a similar vein, Saurav and Chandan [Sau17] put forward 
a grey-box approach for modelling a building. Their approach categorises building components as either 
those connecting the building to the thermal grid (“primary-side” components) or those contained inside 
the building (“secondary-side” components). Thereafter, the authors take a bottom-up approach by 
first, developing the models for each component, then estimating the physics-based parameters 
appearing in the component models using data and lastly, integrating these completed models together 
to form a model for the overarching “building’ system.  As mentioned in the previous paragraph, LSTM 
networks are also being used to achieve accurate thermal models. For example, Elmaz et al.  [Elm22] 
propose a data-driven hybrid approach wherein a CNN-LSTM model is trained on simulation data (white-
box model) and thereafter, the physical parameters of the model are refined using real-world data. The 
proposed model has a lower root mean square error (RMSE) in comparison with a black-box model.  A 
very simple 3R1C model seems to be learnable and quite acceptable. Another method is applied by 
Madsen [Mad95] who uses a stochastic system identification technique. Here a 2R2C model is trained 
using a limited dataset.  
 
These methods specifically look at the modelling the thermal envelope, but do not necessarily reflect 
the user behaviour. Instead of modelling the thermal behaviour itself, it could also be inferred from the 
reaction of control systems to heating devices. This however demands the control of a larger cluster of 
devices. Fink et al. put forward a time model a community with multiple heat pumps as a mixed-integer 
linear programming (MILP) problem and propose a global MILP approach and a timescale MILP approach 
to solve the problem [Fin15]. The global MILP approach creates a single large instance of the problem 
and calculates an optimal solution, it is impractical for real-world usage and not sensitive of future 
changes or alterations in the profile. In the timescale MILP approach, the authors address these 

 
12 https://solcast.com/ 
13 http://forecast.solar/ 
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problems, by proposing an offline approach wherein the strictness of the constraints is adjusted for 
future intervals. For example, the current interval i=1 had the highest optimality requirement, while the 
next 2 intervals i=2 and i=3 have lower optimality requirements and the intervals i=4, i=5 and i=6 have 
even more relaxed constraints than i=3 and i=4 intervals. Fink et al. compare the 2 MILP approaches 
with a reference case of no control and show a peak reduction of 98% and 96% for global MILP and 
timescale MILP respectively.  
 
Claessens et al. show that [Cla12, Cla13] cluster flexibility can be learned using reinforcement learning 
techniques under the assumption of repetitiveness. Urieli and Stone [Uri13] put forward a heat pump 
control agent based on adaptive reinforcement learning (RL) that aims to reduce energy savings while 
maintaining occupant comfort. Another approach is to track and learn from only a subset of devices, 
which are called tracer devices [Iac17]. It has also been shown that such models can also be utilized to 
forecast a flexibility trajectory [Sae22]. Ana David et al. [Dav22] show that optimal control can be 
achieved using a fully data-driven approach. This makes such machine learning models, based on grey- 
or black-box models also suitable for Model-Predictive control strategies. 
 
Another way to overcome model errors regarding human behaviour is by making the control algorithm 
itself more robust to such errors instead of looking for better models [Kla16]. Fischer et al. [Fis17, Fis18, 
] have studied the control of heat pumps using the Smart Grid Ready interface. They conclude that with 
a large pool of heat pumps, it is not necessary to have insight in the state of a room and/or heat pump. 
Instead, controlling a random heat pump within the system seems to be just as effective. Lastly, an 
overview of heat pump control strategies as found in literature is shown in Figure 5.2.  
 

 
Figure 5.2: Heat pump control strategies as found in literature [Fis17a] 

 
Twomes: real-world thermal envelope learning in practice 
Real-world experiments with learning thermal envelopes by applying machine learning are conducted 
in the Twomes14 project, in which we will zoom in in the next part. Twomes is a research project 
spearheaded by the Energy Transition research group of the Windesheim University of Applied Sciences 
in Zwolle. Estimating the heating parameters of any dwelling by conventional means, such as with a 
manual inspection by a heating consultant, is a time consuming, expensive and non-scalable approach. 

 
14 https://techforfuture.nl/project/twomes-digital-twins-voor-de-warmtetransitie/ 
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The Twomes project aims to calculate the same parameters by acquiring weeks of data from the smart 
meter and the thermostat or central heating buffer of the dwelling by using open-source hardware-
based data-sniffers attached at the aforementioned appliances 15. For each dwelling, the Twomes 
hardware aims to use the acquired data to understand the characteristic heating factors of that dwelling. 
Each dwelling is defined by four characteristic factors, namely, the dwelling type, installation type, the 
thermostat settings and the comfort needs of the dwelling’s residents16.  
 
Figure 5.3 shows the working of the Twomes project. Firstly, open-source hardware records weeks of 
information from the smart meter and the boiler. Secondly, this data is combined with meteorological 
data from KNMI and publicly available information about the dwelling. Lastly, analysis of all this data 
from the dwelling results in useful insight regarding the optimal thermostat settings or the possible (if 
any) advantages of installing a (hybrid) heat pump in that specific dwelling, to name a few. To 
summarize, the Twomes project aims to compile a digital heat-specific twin of a specific dwelling and 
analyse the same to optimize the heat demand and production of that dwelling. 
 

 
Figure 5.3: General structure of the data flow in the Twomes project 

Existing optimization and control methods 

This section describes existing control systems and standards found within households and heating 
systems. These can be seen as stand-alone agents that do generally not take into account external 
stimuli. Furthermore agent-based systems that react to external stimuli are discussed to the extent 
where it is done so without coordination and therefore only perform local optimization, but no global 
system optimization is performed. These systems currently exist and will remain to exist. In the scope of 
SUSTENANCE it is therefore also important to investigate how these systems can be integrated into 
aggregated and coordinated control schemes. From here on we move into the multi-level agent systems, 
leveraging the benefits of coordinated control by employing Transactive Energy through bi-directional 
communication. 

 
15 https://github.com/energietransitie 
16 https://www.windesheim.nl/onderzoekspublicaties/twomes-digital-twins-voor-de-warmtetransitie   
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For a long time we have had thermostats in our rooms to regulate the central heating system. Originally 
this system would open or close contacts depending on the indoor temperature and the setpoint. By 
closing the contacts, the heating system would turn on (e.g., a gas boiler). With the introduction of 
condensing boilers, boosting the efficiency over 100%, it became important to more intelligently control 
the heating system by reducing the supply temperature to the heating system, such that the boiler can 
operate withing its most efficient operating range. To this end, the OpenTherm protocol was invented. 
Currently, thermostats also implement self-learning methods to be able to optimally control the supply 
temperature, thereby minimizing the energy needs, while maximizing comfort by reducing indoor 
temperature fluctuations. It is shown that a 16.7% reduction of energy demand can be obtained when 
using an optimal control policy based on building models compared to a simple rule-based solution 
[Zha19]. 
 
With the advent of energy markets, external signals may intervene with this operation. However, 
unlocking flexibility still needs to go hand in hand with user comfort. A good source of flexibility for local 
systems is the use of hot water boilers together with a heat buffer. This buffer makes sure that user 
comfort is not compromised by the optimization. Machine Learning techniques can be used to learn 
from historical data. Research by [Mbu20] shows that double Q-learning can be used for local control of 
electric water boilers to minimize the operation costs and/or maximize the self-consumption of local PV 
generation. Real-world experiments using Q-learning to control domestic hot water boilers have been 
executed in [Som17]. Significant increases in self-consumption of PV-energy have been obtained.  
 
Aggregated optimal control of heating devices 
Unlocking flexibility seems to be more promising on an aggregated scale. This however requires some 
cooperation among the assets. This is possible with transactive energy, in which feedback is provided. 
One of the first solutions is the HeatMatcher [Boo13], which extended the PowerMatcher to control 
heat pumps in an on-line fashion using 3D bid-functions, more about that is explained in the following 
section. Coordination of heating devices using a similar auction based structure is considered in [Iac17], 
where tracer devices are used to infer the cluster flexibility. This makes the system more privacy friendly, 
as bi-directional communication is not required for each and every heating device to be able to 
adequately control the heating system. Another way is direct control, in which one system decides which 
heating device should change its state. An example of this are the Smart Grid Ready interface 
experiments by Fischer [Fis18].  
 
Another method is by utilizing generic mathematical solvers to solve e.g., (Mixed) Integer Linear 
Programming problems. Van Leeuwen et al. [Fin16] have employed a Mixed Integer Linear Program 
(MILP) model to optimally schedule heat pumps 24 hours ahead in time. However, this system is found 
to be quite computational expensive. Therefore, they came up with a different approach based on 
earliest dead-line scheduling first, based on user comfort [Fin15]. This latter heuristic seems to perform 
nearly as good, at a significant lower computational cost. Combined optimal operation of HVAC systems 
across multiple microgrids is investigated in [Hus17], resulting in over 40% cost reduction compared to 
the situation without coordination.  
 
Overall, it seems that just utilizing general solvers for mathematical formulations do not yield the desired 
scalability. Therefore, [Vay14] uses dual composition methods in energy management to spread the 
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workload and achieve scalability. Another method that has gained recent attraction is the Alternate 
Direction of Multiplier Methods (ADMM) [Boy11], which allows optimization problems to be split up and 
distributed, whilst maintaining strong mathematical proofs. ADMM is also tested in practice with 
batteries, which provide similar buffer-type flexibility, by Reijnders et al. [Rij20]. A distributed method 
based on Dynamic Programming is presented by Bosman [Bos12], called Iterative Distributed Dynamic 
Programming (IDDP). However further analysis. Toersche [Toe16] has applied this model and compared 
it to another well-known method, namely Danzig-Wolfe decomposition [Dan16] and Profile Steering 
[Ger15], of which the latter shows to give good results, albeit with a longer computation time. 
 
Profile Steering [Ger15] is a heuristic that is especially useful when the objective is to schedule the 
aggregated power profile ahead in time rather than directly optimizing for prices. It sends out a desired 
profile spanning multiple time intervals into the future, to lower-level agents, which respond with the 
profile that they can attain. Iteratively new profiles are generated and accepted based on their 
improvement, measured as the Euclidean distance between the proposed solution and the desired 
profiles. Iteratively devices react and improve the overall profiles, while the highest-level coordinating 
node ensures that grid capacity constraints are being met. Originally the scalability was limited, but this 
has been lifted by Hoogsteen et al. [Hoo18] in later work. Furthermore, by replacing the steering vectors 
by matrices, it is possible to simultaneously optimize for multiple energy carriers [Sch17], [Hoo20] in 
hybrid-energy systems. The methods can be used for offline scheduling, but also for online control by 
utilizing partial optimization whenever significant events happen to the system [Hoo17a]. 
 
Van der Klauw et al. [Kla16] have used the Profile Steering method to efficiently coordinate the 
operation of HVAC systems. Similar observations were obtained with a simulated neighbourhood 
consisting of 16 houses that try to minimize their electricity import. De Goeijen [Goe19] used a hybrid 
approach in which a MILP model is used to optimally control multiple heating assets linked to a large 
seasonal heat buffer. Since the model was too complex to be solved at once, the seasonal patterns were 
captured first, and subsequently used as blueprint to optimally control the heating assets on the shorter 
timescale, which was solvable.  
 
Real-world experiments with aggregated flexibility of heat pumps are conducted in the Houthaven 
HeatMatcher project, in which we will zoom in in the next subsection. Herein, flexibility is aggregated 
through demand functions. Another concept, called FlexOffers, also communicates aggregated flexibility 
in a more sophisticated way, which will be presented afterwards. 
 
Houthaven: HeatMatcher real-world heat pump control experiments 
The increasing number of device options has led to an increasing control space of variables which cannot 
all be optimized by the custom (and device-specific) climate control systems of Honeywell or Itho 
Daaldedrop. TNO attempted to fulfill the need for a general distributed energy management approach 
with a hierarchical multi-agent system called Heatmatcher (HM) [Boo13, Put18]. Based upon the 
methodology of the Powermatcher [Kok13], Heatmatcher was built on three principles. Firstly, 
openness, which is the ability to integrate all distributed energy resources into the control algorithm. 
Secondly, scalability, which is the ability to connect an ever-increasing number of devices, representative 
of an increasing residential heating network.  Lastly, privacy, which is the ability of the device owner to 
retain full ownership over the working of their devices. 
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In HM hierarchy, at the lowest level, each device such as a solar panel, gas boiler or heat pump, to name 
a few, has its designated device agent which proposes a bidding curve on its behalf. The agent’s bidding 
curve represents how much money that specific device is willing to pay for how much energy. Some 
examples of bidding curves are shown in Figure 5.4.  
 

 
Figure 5.4:  Example heat bidding curves for some agents. Heat supply is shown as negative demand in 

these curves [Put18] 
 
After the device agents come up with the bids for their respective devices, a concentrator agent does its 
job of aggregating the bids of physically closely located device agents [Kok13]. The concentrator agent 
then sends the aggregated bidding curve upwards to the auctioneer agent. The auctioneer agent 
receives the bidding curve from each concentrator agent cluster, determines the market clearing price 
and returns this to the concentrator agents, who in turn, pass it down the hierarchy to their respective 
device agents. The market clearing price is determined using linear programming (LP) as the point of 
minimal mismatch between the demand and supply of energy while conforming to grid constraints. It is 
important to note that the bidding curves act as an abstraction, keeping the device-specific details 
hidden from agents. This retains full ownership of the device’s working with the device controller and 
ensures privacy. 
 
Flex-offers aggregation framework 
As part of the MIRABEL project, Bach Pederson et al. [Ped18] put forward an efficient and scalable format 
that approximately represents flexibility information per device called Flex Offers (FO). There are many 
advantages in using FOs. Firstly, they are capable of handling state-dependent loads such as heat pumps 
and grid constraints such as congestion bottlenecks. Secondly, FOs can be applied to convey flexibility 
information about a number of devices (are device agnostic) and also support aggregation and 
disaggregation operations (scalability). Lastly, a price component can also be encoded into FOs. 
 
Figure 5.5 shows how a FO for a single device (for example an electric vehicle) looks. Each FO consists of 
two types of flexibility. The first is amount/energy flexibility. This flexibility is encoded on the y-axis. Each 
bar represents a time slice of energy consumption for that device. amin represents the minimum amount 
of energy the device needs in that specific time slice to be able to provide its service. The variable amax 
creates an interval within which the device can adjust its energy consumption while fulfilling working 
constraints (such as the maintenance of a comfort temperature for a heat pump). The second type of 
flexibility information is time flexibility. This flexibility is encoded on the x-axis as the time interval within 



101022587 – SUSTENANCE –H2020-LC-SC3-2018-2019-2020 / H2020-LC-SC3-2020-NZE-RES-CC 

 _ 

 

Page 47 of 78 

which the device can operate. The earliest possible start time for the device is represented by tes and 
the latest possible start time by which the device must start is represented by tls. Lastly the latest possible 
end time for the device is represented by the variable tle.  
 

 
Figure 5.5: Representation of a simple FO for a device. Energy (flexibility) is represented on the y-axis 

and time (flexibility) is represented on the x-axis 
 
Definition of a Flex Offer (FO): 
A FlexOffer f is a tuple f=([tes,tls],p) , where [tes,tls] is the start time flexibility interval and p is the 
amount profile. The time is discretized into equal-sized units, e.g., 15-minute intervals. Thus, we use 
tes∈N to specify the earliest start time and tls∈N to specify the latest start time. The p is a sequence of 
slices ⟨s1,…,sd⟩ , where a slice st is a continuous range [emin,emax] defined by the minimum emin and 
maximum emax energy bounds, and d is the number of slices in p .  

𝑇𝑇𝑆𝑆𝑡𝑡𝑇𝑇𝑇𝑇 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒 𝑓𝑓𝑇𝑇𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑇𝑇𝑓𝑓𝑡𝑡𝑒𝑒 𝑓𝑓𝑆𝑆𝑒𝑒 𝑑𝑑𝑒𝑒𝑑𝑑𝑓𝑓𝑐𝑐𝑒𝑒 𝑑𝑑𝑝𝑝 =  �(𝑇𝑇𝑎𝑎𝑎𝑎𝑚𝑚 − 𝑇𝑇𝑎𝑎𝑝𝑝𝑝𝑝)𝑝𝑝

𝑝𝑝=𝑝𝑝

𝑝𝑝=1

 

𝑇𝑇𝑆𝑆𝑡𝑡𝑇𝑇𝑇𝑇 𝑡𝑡𝑓𝑓𝑚𝑚𝑒𝑒 𝑓𝑓𝑇𝑇𝑒𝑒𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑇𝑇𝑓𝑓𝑡𝑡𝑒𝑒 𝑓𝑓𝑆𝑆𝑒𝑒 𝑑𝑑𝑒𝑒𝑑𝑑𝑓𝑓𝑐𝑐𝑒𝑒 𝑑𝑑𝑝𝑝 =  𝑡𝑡𝑝𝑝𝑠𝑠 − 𝑡𝑡𝑒𝑒𝑠𝑠 

 

There are 7 stages in the life cycle of FOs explained in Figure 5.6 [Ped18]. 
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Figure 5.6: The 7 stages in the life cycle of an FO. The cycle starts with data measurement at device and 
house level and ends with the assignment of a schedule to the same 

Existing electricity system integration 

Currently, DSOs are aware of the potential power quality and congestion problems within local 
distribution that result from the electrification. This has led to an increase in efforts, lobbying and 
literature on potential technical solutions that also require a legal framework. In this light, both USEF 
[USEF21] and the traffic-light concept proposed by BDEW [BDEW15] serve as a possible techno-legal 
framework in which DSOs have the opportunity to influence the market and/or directly change the 
power consumption of assets to avoid grid problems and to ensure a safe and reliable operation. 
 
Within the context of electricity-to-heat systems, the so-called “Smart Grid Ready”-standard [Fis17] for 
heat pumps is developed. Herein, a signal can be sent by the DSO to reduce the power consumption by 
maintaining a lower temperature. Also, an increase in power consumption is possible in times of local 
(over)generation of electricity through pre-heating, generating and buffering hot tap water. Currently, 
Germany is looking into adapting the law to legally allow DSOs to intervene and change the power 



101022587 – SUSTENANCE –H2020-LC-SC3-2018-2019-2020 / H2020-LC-SC3-2020-NZE-RES-CC 

 _ 

 

Page 49 of 78 

consumption of heat pumps [Bar22]. Potential integration of the OpenADR [OADR17] communication 
standard in Europe is also envisioned. 
 
Within the Netherlands, initiatives to locally control heat pumps in an aggregrated way are limited to 
pilot sites. An example is Houthaven [Boo13], where the HeatMatcher was tested in practice to reduce 
the load of an apartment building. The USEF framework is tested in the neighbourhood HoogDalem17 in 
Gorinchem. More recently, a collective floating house, Schoonschip18, in Amsterdam is connected using 
one grid connection and its heat pumps are controlled using a smart grid. 
 
Also, more and more utilities and aggregators are starting to see the benefits of offering smart domestic 
hot tap water boiler systems for their customers. Essent started with experimenting in the Netherlands 
with the introduction of smart boilers in 201719. Other utilities followed later, such as Eneco in 201920. 
A study with potential of utilizing residential flexibility in the Nordic countries has been executed, yet 
many barriers still arise21. 
 
Outside Europe, direct control of HVAC systems is already employed for more than a decade. Especially 
in the United States, control over air conditioners, but also HVAC systems through smart plugs or direct 
control through smart thermostats is already used. In some states, e.g. California and Texas, there are 
markets in which aggregators and utilities help in balancing the electricity grid using aggregated control 
of HVAC systems, such as Leap22. 

5.2 Communal coordination of smart integrated heating systems 
Based on the previously introduced literature on energy management and control strategies, together 
with the modelling and the situational context within SUSTENANCE’s demonstrators, we can draw out a 
system architecture. This section merges all aspects and sketches a modular integrated system, utilizing 
aforementioned models and algorithms, that can be used as basis for the demonstration sites and 
market integration, both within the current markets, as well as an outlook for potential emerging 
markets. 

Context and objectives 

The communal context is central to the SUSTENANCE project. We find common grounds for the different 
demonstrator sites and their respective countries based on the findings and market outlooks. With 
regard to market opportunities and integration of flexibility of electricity-to-heat system, we see 3 major 
opportunities: 

1. Both Denmark and the Netherlands have seen an adoption of dynamic prices within the energy 
sector as stimuli for consumers to change their behaviour on an individual level. This 
necessitates the inclusion of smart control for electricity-to-heat devices, such as heat pumps as 
their electricity consumption forms a major part of the energy bill.  

 
17 https://www.usef.energy/app/uploads/2017/07/Publieksbrochure-Hoog-Dalem-2017.pdf 
18 https://greenprint.schoonschipamsterdam.org/impactgebieden/energie 
19 https://www.installatie.nl/nieuws/proef-met-slimme-boiler/ 
20 https://nieuws.eneco.nl/slim-apparaatje-bij-boiler-vangt-pieken-wind--en-zonnestroom-op/ 
21 https://www.nordicenergy.org/wp-content/uploads/2017/12/Demand-side-flexability_-DSO-perspective.pdf 
22 https://www.leap.energy/ 
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2. Moreover, we see the emergence of potential congestion problems in the electricity grid in all 
four countries. Hence, it is expected that the local state of the grid will form a factor to which 
control systems also must react. The exact implementation is yet highly uncertain, whether it is 
a time-varying capacity tariff, locational marginal pricing, or a (dynamic) bandwidth model. 
Nevertheless, local congestion markets are necessary to safeguard the security of supply to 
customers within the electrification and as such market opportunities are expected to arise. 
Ideas and concepts have been proposed previously in USEF and experiments with Smart Grid 
Ready interfaces to avoid congestion are already conducted in Germany. For this, next to market 
integration, it is important to monitor the grid state and intervene accordingly. 

3. Lastly more imbalance is expected in the market due to volatile production of renewables. A 
supplier might be able to further reduce electricity bills if it can utilize flexibility to perform 
portfolio balancing utilizing the (passive) imbalance market. Progressive suppliers in the 
Netherlands, especially those with dynamic tariff energy plans, are already looking into 
possibilities to do so with their customers as they see market opportunities. This field, however, 
is new and it is not clear how this will take shape. 

These highlight the potential markets for electricity-to-heat flexibility to be integrated, to create value, 
and to deliver cost savings to customers, while ensuring security of supply with increased shares of 
carbon-free sources. Overall, it is observed that the price of energy, and even more so fuelled by the 
war in Ukraine, is the main driving factor for the communities in SUSTENANCE, as well as in broader 
perspective. In essence, this boils down to the following objective: 
 

Minimising the net cost of importing energy for the community 
 
Herein, community is an important factor as customers are jointly connected to a section of the grid. 
Hence there is a collective interest in avoiding high grid loads, which could lead to congestion and 
additional price spikes in one of the (future) energy price components. Thus, next to only an individual 
driver (e.g., dynamic tariffs), there will be a communal component as well. 
 
Next to this more economic objective, the SUSTENANCE project also aims predominantly on maximizing 
the utilization of carbon neutral sustainable energy by utilizing the inherent flexibility of devices, 
including electricity-to-heat systems. This is key for all the four demonstrators and can be achieved on 
different levels, with their own respective priorities and local context and (economic feasible) 
possibilities. These are, from high priority to low: 

• Strive for a 100% autarkic operation of the local grid, where all energy is sourced locally from 
RES in combination with (seasonal) storage; 

• Maximize the utilization of locally generated electricity within the premises of a customer, or on 
the community level (or both); 

• Utilize energy from the main grid when the carbon emissions are low. 

All of these can be fit in the original objective. In fact, in many cases they are (or will be) reflected in the 
cost of energy. Low day-ahead prices to some extent already coincide with low carbon emissions from 
the national grid’s energy mix (but not always completely [Hoo22]). Feed-in-tariffs are plummeting and 
subsidies are reduced for PV, resulting in the urgency to utilize self-produced electricity directly for cost 
efficiency. Furthermore, dynamic capacity tariffs may arise, steering towards local (autarkic) use of 
energy. Even if markets are not (yet) in place, they may still be inserted in the cost function, allowing to 
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dynamically add these factors per demonstrator and hence keeping the framework flexible enough to 
fit all needs. 
 
Lastly, these goals are overarching for SUSTENANCE, hence the electricity-to-heat systems must 
integrate with an overarching control structure in which other devices also play a role. These systems 
must be integrated in a coordinated energy management system where electricity-to-heat systems form 
a symbiosis with other devices, such as electric vehicles and battery storage assets, to achieve the 
general objective for SUSTENANCE. 

System architecture and system integration 

Given this context, it immediately becomes clear that there are at least two layers upon which must be 
acted: Global perspective(s) and local perspective(s). This forms a cornerstone for the system 
architecture for electricity-to-heat integration. Furthermore, there are different data streams and 
interfaces upon which an energy management system can act or interact. As observed, interactions are 
expected to be predominantly coming from the electricity market. An important interface is that with 
other devices within the energy system and the energy management system as a whole, which is topic 
of other SUSTENANCE deliverables.  
 
In this regard, we envision a modular system where the electricity-to-heat systems are integrated in a 
decentralized energy management framework and co-exist with other flexible devices in parallel. This 
section presents the local and global perspectives, their roles, and interactions.  
 
Local perspective 
Given the perspectives, it is then logical to have a local Home Energy Management System (EMS) 
controller that allows for local coordination among the devices within the local domain (see Figure 5.6). 
This domain could be for instance a household, building or community. Similarly, to the hierarchical 
structure as presented with the Profile Steering approach, different local levels are an option here too. 
This allows us to maintain flexibility across different implementations and nuances. A generic method 
and/or framework to exchange flexibility, such as FlexOffers, profiles (such as in profile Steering), EF-Pi 
or USEF is required here to ensure interoperability and the flexibility to integrate other devices in the 
future. 
 
The local level therefore also includes the devices embedded in devices and had access to the local 
information. This information may be privacy sensitive, such as personal preferences (e.g. thermostat 
setpoints and operation schedules). The local level by design adds a layer upon which local processing 
and anonymization can be achieved. External data, such as weather forecasts and electricity market data 
can be retrieved. Combined with local models and machine learning techniques, local optimization of 
local assets can be achieved according to the models presented in Chapter 3 and the optimization 
methods from this chapter. Within this context we assume that all information and data communicated 
within the system is valid as robustness and cyber security is not a topic of this deliverable. 
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Figure 5.7: System architecture within a household with both physical power flows (black lines, 

rectangle shapes) and the control architecture (green arrows) with device agents (hexagons). Note that 
other devices as used in SUSTENANCE also fit this scheme. 

 
To this end, based on objectives and optional input, optional operation of joined devices and/or 
households (in aggregation) can be achieved where also local preferences and constraints can be taken 
into account. Only the aggregated information as demanded, e.g., power profiles of FlexOffers have to 
be transmitted. Thus, the privacy sensitive data does not need to be communicated. Additionally, the 
local level also forms a solid basis to fall back on in case communication with the other layers fail, or 
would take too much time. Hence it allows to quickly respond to local adjustments or problems that can 
be observed from e.g., the grid state. This level therefore is also more tangible and tied to the physical 
system. Future envisioned markets, such as local congestion markets opened by DSO’s can also be 
integrated in this level. 
 
Global perspective 
The other level is the global perspective where information of the local controllers is aggregated to a 
global controller (see Figure 5.8). The local levels already communicate their flexibility in abstract 
manners to ensure that sensitive data is protected. In this level, remaining flexibility can be redistributed 
among the local controllers if needed.  
 
As indicated, aggregated flexibility may be more predictable on this level, such that the flexibility here 
can be utilized to act on global markets. Furthermore, this level has the oversight of the overall portfolio 
and might see additional opportunities to utilize offered flexibility to reduce costs of energy. Clear 
contracts on the use of such flexibility, and especially the revenue streams, are important. This also 
ensures that local controllers can make conscious trade-offs whether certain flexibility will be worth the 
potential discomfort. Note that local controllers can preserve their own flexibility by not communicating 
this to the higher level, keeping local levels in charge of their own assets if they desire to do so. 
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Figure 5.8: Hierarchical setup of houses with Home Energy Management Systems (HEMS) and a global 

coordinator aggregating and coordinating the flexibility 
 
Therefore, this level will contain the optimization algorithms and business logic to steer a cluster of 
devices. Except for specific personal preferences and information (which remain local for privacy), the 
same data streams and interfaces with markets and service providers may be potentially integrated on 
this level. Optionally, centralized optimization of multiple assets may occur on this level, but it is also 
possible to keep this on the local level. This is a modular element that can be adjusted based on the 
demonstrator demands. 
 
If more insight in effects of a decision is required, e.g. when utilizing a FlexOffer, this part could be 
simulated by the local controller. Hence, it can request to give an outlook on how utilizing flexibility now 
will affect the flexibility in the future based on models and historical data. This way, privacy sensitive 
data can remain local, but the global controller (e.g., an aggregator or utility) is able to get a clear picture 
of its position in the market, now and in the future. 
 
Modules, Interaction and Hierarchy 
Based on these two levels, we define a system of (optional) modules and blueprints that work together. 
These modules either run local or global, but also have dependencies in time and information from other 
modules. Furthermore, each module has its own responsibilities and potentially responsible party as 
well. These are outlined below, in chronologic order, starting from day ahead optimization. These 
modules are depicted in Figure 5.9 below. 
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Figure 5.9: Local (L) and Global (G) modules that conceptually make up the energy management system 
 
Day-ahead device operation optimization 

• Time:  Approximately a day ahead before or after market closing 
• Level:   Local, within premises 
• Responsibility:  Household EMS, possibly energy service provider 
• Priority: Low, full control by customers through preferences (USEF: Green) 
• Stakeholders: Customers, energy service provider 
• Description: Creation of an optimal schedule for operation of electric-to-heat devices 

based on forecasts and historical data. This forms the baseline operation for one or more 
devices. Coordination with devices withing premises is possible. Possibility to interact on 
dynamic tariffs. 

Day-ahead Community optimization 
• Time:  Approximately a day ahead before or after market closing  
• Level:   Local or Global (depending on configuration) 
• Responsibility:  Community, DSO 
• Priority: Low, full control by customers through preferences (USEF: Green) 
• Stakeholders: Customers, Community, DSO 
• Description: Internal day-ahead sharing and trading of electricity within the community. 

At this stage, also prechecks of capacity problems with the DSO may be resolved (optional). The 
input here is the baseline energy usage profile from the households within the community. 

 
Day-ahead Portfolio optimization 

• Time:  Approximately a day ahead before or after market closing 
• Level:   Global  
• Responsibility:  Utilities, Aggregators 
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• Priority: Low, full control by customers through preferences (USEF: Green) 
• Stakeholders: Customers, Aggregators, Energy service providers/utilities 
• Description:    Left-over flexibility can be offered to utilities and aggregators to create 

more value of the flexibility for portfolio optimization. This flexibility is based on the initial local 
and/or community optimization 

Imbalance Portfolio optimization 
• Time:  A few minutes before delivery 
• Level:   Global  
• Responsibility:  Utilities, Aggregators 
• Priority: Low, full control by customers through preferences (USEF: Green) 
• Stakeholders: Customers, Aggregators, Energy service providers/utilities 
• Description: Flexibility (e.g., FlexOffers) can be dispatched (and updated) to balance a 

portfolio based on the portfolio balance. Comfort should be maintained through the offer 
specification if the customer desires to.  

 Congestion Management 
• Time:  A few minutes before delivery 
• Level:   Local 
• Responsibility:  Customers, Community, DSO 
• Priority: Medium, up to forced intervention (USEF: Yellow-Orange) 
• Stakeholders: Customers, Community, DSO 
• Description: Flexibility (e.g., FlexOffers) can be dispatched (and updated) to avoid 

congestion problems. Based on rules and regulations this could be so forcibly, but should be 
done through policies that also ensure fairness. This is an intervention to the free market and 
would be the domain for energy modii (Task 6.1). Congestion management could occur 
simultaneously and goes together with Imbalance management, but this has a higher priority. 

Securing supply 
• Time:  Just before delivery 
• Level:   Local 
• Responsibility:  Customers, Community, DSO 
• Priority: High, direct control (USEF: Red) 
• Stakeholders: DSO 
• Description: (Near) real-time intervention based on the local grid state to ensure 

stability and avoid critical overloading. This may be observation based (e.g., voltage 
measurements) and will overrule all other setpoints and plans. 

Operation of the device 
• Time:  At delivery 
• Level:   Local 
• Responsibility:  Manufacturer, Energy management system 
• Priority: High, direct control (USEF: Red) 
• Stakeholders: Customer, Manufacturer 
• Description: Making the (planned) action concrete by controlling the device through an 

(exposed) API. The manufacturer of the device is responsible to reject/ignore actions that may 
lead to damage. 
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6 Evaluation 
This Chapter provides an evaluation of the presented literature, models and control concepts by 
performing a simulation study. Using this study, we determine the suitability of presented work for 
application within the Sustenance project and the electricity-to-heat integration. 

6.1 Validation of the PCM storage model 

Simulation results of the PCM storage system dynamics, involving temperature of HTF and the thermal 
power flow, are validated with the real system’s behaviour, as presented in [Gra21], for both charging 
and discharging processes of the storage system. The detailed calculation for a 785 litre PCM based 
thermal storage tank is presented in Annex A (9.3). Simulation is carried out for two different storage 
tank models (average model and discrete model). Simulation results from the discrete model shows a 
good alignment with the experimental values as compared to average model. In the discrete model, the 
thermal storage tank is divided into 5 equal parts horizontally, with equal volume of PCM and HTF. The 
temperature is considered uniform in each discrete layer.  
 
During charging, the storage tank is charged with the flow of HTF at the rate of 0.1 kg/s (360kg/h) and a 
temperature of 67oC, while discharge is zero.  For discharging, storage tank is discharged with the flow 
rate of 0.1kg/s and return temperature of 47 oC.  
 

  

  

Figure 6.1: Comparison results for real system simulation model during charging and discharging using 
various methods 
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Figure 6.1 (a), (c) show the measured (Tout,exp) and simulated (Tout,Avg,Sim) temperatures for the average 
model and discrete model (Tout,Dis,Sim) during charging and discharging, respectively. Figure 6.1 (b), 2(d) 
show the thermal power measured (Pexp) and simulated (PAvg,Sim) for average model and discrete model 
(PDis,Sim) during charging and discharging, respectively. Discrete model follows the system dynamics more 
closely than the average model.  
 

  

  

Figure 6.2: Error Statistics for temperature and thermal power based on 6.1 for (a,c) HTF temperature 
(b,d) Thermal power flow 

 
Figure 6.2 shows the good alignment of simulation and actual performance of PCM based thermal 
storage tank, for both discrete and average model. The MAPE is less than 4% for HTF temperature and 
less than 2% for thermal power flow.  Although the error for the discrete model is smaller than as 
observed for the average model, the average model is equally competitive and simple with faster 
computational dynamics.   

6.2 Simulation studies 

Model, context, and objectives 

The simulation study is based on a small and representative neighbourhood of 8 households connected 
to a low voltage distribution grid. This size allows us to simulate the interaction between different houses 
in integration, whilst being small enough to be able to carefully study and evaluate the results. The 
details are provided below 
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Environment 
Figure 6.3 represents a test low voltage distribution grid network with eight houses connected in a radial 
feeder. There are three different loads in each house, regular household load (H01-H08), EV load (EV_01-
EV_08), and heat pump load (HP01-HP08). EV loads are not considered in this part of the report and 
would be further incorporated in future deliverables. Other load_1 and Other load_2 in the figure_RS1 
represents bulk hose hold loads in other part of the distribution feeder connected within the same 
transformer. This grid network is further investigated for smart control of HP and analysis on terminal 
voltage at the point of coupling of HP as well as for line  loadings.   

 
Figure 6.3:  Test LV distribution grid network for with eight houses in a radial feeder 

 
Weather data is obtained from the KNMI [KNMI] from weather station Twenthe, the Netherlands for 
the years 2010-2020, of which the year 2010 is used to train models and data from 2011 is used for the 
simulation study. This dataset contains both solar irradiation as outdoor temperature, which we need 
as input to calculate the total heat demand. For electricity-to-heat integration we use the day-ahead 
electricity market data. To be more precise, we use the 2021 electricity market data by ENTSO-E23. 
 
Houses 
The 2R2C-model as presented in Chapter 3 is used for the thermal envelope of each of the households 
within the model. This model represents a floor-heating system as encountered within the Dutch and 
Danish use-cases and seen as the best fit system for heat pump integration. The heavily insulated semi-
detached model parameters as presented by Van Leeuwen [vLe17] are used in simulation study, see the 
Table 6.1 below. Furthermore, 2 windows are added facing East and West. 
 

Table 6.1: Used model parameters for the thermal envelope 
Parameter Value 

𝑹𝑹𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 0.001 K/W 
𝑹𝑹𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒇𝒇𝒇𝒇𝑻𝑻𝒆𝒆 9.9985 K/W 
𝑪𝑪𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇 5100 Wh/K 
𝑪𝑪𝒛𝒛𝒇𝒇𝒆𝒆𝒆𝒆 10000 Wh/K 

Windows 5m2 facing East, 5m2 facing West 

 
23 https://transparency.entsoe.eu/ 
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Human behaviour 
An important factor in the heat demand is the human factor. To this end we have generated data using 
the Artificial Load Profile Generator (ALPG) [Hoo16]. The 8 different predefined types of household 
compositions by the ALPG are used to match the 8 households in the model. This allows us to simulate 
different types of behaviour on the heating system. The resulting data provides the necessary input as 
described in Chapter 3 such as, the domestic hot water usage, added heat by people and devices, 
ventilation, and thermostat setpoints.  
 
Thermal devices 
To supply heat, we have added a heat-pump and PCM-based thermal storage to each of the 8 
households. The storage tank has a 500 L capacity with a usable storage capacity of 15 kWh. The 
controllable heat pump can be turned on and off only with a thermal output of 9 kW. All specifications 
are provided in Table 6.2 and Table 6.3 below. 
 

Table 6.2: Parameters for PCM based thermal storage tank and HP 
Parameters Unit Value 

Volume of storage tank ( 𝑽𝑽𝒔𝒔𝒔𝒔𝒇𝒇) 𝑚𝑚3 0.5 
Ratio of height to diameter (𝑹𝑹𝒂𝒂) 𝑆𝑆/𝐷𝐷 3.25 

overall heat transfer coeff of tank (𝑼𝑼𝒔𝒔) 𝑊𝑊 𝑚𝑚2 𝐶𝐶𝑝𝑝⁄  0.9 
Ambient temp in storage room (𝑻𝑻𝒂𝒂) 𝐶𝐶𝑝𝑝  10 
Temp of incoming cold water (𝑻𝑻𝒇𝒇) 𝐶𝐶𝑝𝑝  30 

Total mass of how water in the tank (𝑻𝑻𝒘𝒘) 𝑘𝑘𝑘𝑘 346.56 
thermal conductivity of pcm in solid state (𝒌𝒌𝒔𝒔) 𝑊𝑊/𝑚𝑚 𝐶𝐶𝑝𝑝  1 
thermal conductivity of pcm in liquid state (𝒌𝒌𝒇𝒇) 𝑊𝑊/𝑚𝑚 𝐶𝐶𝑝𝑝  0.6 

Total mass of pcm in the storage (𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻) 𝑘𝑘𝑘𝑘 170 
latent heat of fusion (𝑳𝑳𝑻𝑻𝑻𝑻𝑻𝑻) 𝑘𝑘/𝑘𝑘𝑘𝑘 183000 

Melting temp (𝑻𝑻𝒇𝒇) 𝐶𝐶𝑝𝑝  49.5 
freezing temp (𝑻𝑻𝒔𝒔) 𝐶𝐶𝑝𝑝  45 

Specific heat capacity liquid (𝑪𝑪𝑻𝑻𝒇𝒇) 𝑘𝑘/𝑘𝑘𝑘𝑘 𝐶𝐶𝑝𝑝  3000 
Specific heat capacity solid (𝑪𝑪𝑻𝑻𝒔𝒔) 𝑘𝑘/𝑘𝑘𝑘𝑘 𝐶𝐶𝑝𝑝  3000 
convective heat transfer coeff (h) 𝑊𝑊 𝑚𝑚2 𝐶𝐶𝑝𝑝⁄  60 

density of PCM (𝝆𝝆𝑻𝑻𝑻𝑻𝑻𝑻) 𝐾𝐾𝑘𝑘/𝑇𝑇 1.3 
number of heat sel in the tank (𝑵𝑵) 

 
548 

 
Table 6.3: Parameters of HP 

Parameters Unit Value 
Thermal rating of Heat pump 𝑘𝑘𝑊𝑊 9 

Flow rate from HP 𝑚𝑚3/ℎ (1.2-1.5) 
Flow rate from HP 𝑇𝑇/𝑅𝑅 0.3-4.2 

flow in heating system (less than 10 𝒇𝒇/𝑻𝑻𝒎𝒎𝒆𝒆) 𝑇𝑇/𝑅𝑅 < 0.17 
 
Control and optimization 
The aforementioned model and resulting data is used as input for a dynamic physical simulation model 
within the DEMKit tool [Hoo19] (Figure 6.4). Subsequently, controllers are added to form a cyber-
physical systems simulation model. Within this concept, all heating assets are seen as agents. The 
operation of the heat pumps herein is scheduled in an offline fashion using the optimization algorithm 
presented by Van der Klauw [Kla17]. This algorithm can deal with both on-off and modulation-based 
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controlled heating assets. Next to this the hierarchical Profile Steering [Ger15] heuristic algorithm is 
added for coordination between the individual heating assets among the different households.  
 

 
Figure 6.4: Toolchain of importing generated data into the optimization toolkit DEMKit [Hoo17] 

 
Within this heuristic, the objective can be to minimize the Euclidean distance to a desired power profile, 
optimize by minimizing a specific cost function, or a linear combination of the two. The desired profile 
can be a flat profile with zeroes, indicating that balance is desired (i.e., utilizing local generation) and 
peaks (stress on the grid) should be avoided to improve the power quality. Alternatively, a vector with 
electricity prices (e.g., the aforementioned day-ahead prices) can be added to minimize operation costs. 
Note that this vector could also be the (expected) CO2 emissions by the energy mix, such that the 
operation can be scheduled to minimize the carbon emissions instead. 
 
Dynamic Simulation 
The resulting coordinated and optimized operation schedules are used as input for a dynamic simulation 
model in DigSILENT Powerfactory, which also includes the electricity grid. The use of user-defined 
dynamic models of the HP, control, and PCM storage, is developed using DIgSILENT Simulation Language 
(DSL).  
 
Grid properties, such as the voltage at the point of coupling (POC) of the HP in the low voltage grid, 
loading of lines, cables and transformer, are further investigated to assess the need of grid 
reinforcements. The control of HP is also investigated to ensure thermal demand fulfilment for the end 
user while performing DR while trying to maintain electric grid voltage at POC of the HP.  The HP is 
integrated with the electricity grid network via control system.  There are two level of control 
architectures as shown in Figure 6.5  
 
A first level of control is creating the optimized operation schedules (𝐶𝐶𝑠𝑠𝑝𝑝ℎ) based on forecasting the 
thermal generation and demand using Profile Steering [Ger15], algorithms by [Kla17], and utilizing the 
DEMKit implementation [Hoo19]. This control signal is received by second level controller that 
determines the demand response management of individual thermal units.  
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Figure 6.5: Smart control architecture for HP integration 

 
The second level of control is locally available at the installation point of HP and thermal storage unit. 
This controller will manage the On/Off operation of HP with respect to state of energy of thermal storage 
tank, HP dynamics and supply voltage. It ensures consumer demand while supporting node voltage 
regulation. This two-level control ensures the reduction of forecasting errors, and communication 
breakdown through set of control logic presented in second level control (Figure 6.6). 
 
The thermal storage tank can reach upper or lower limit of temperature in the storage tank while On-
Off operation schedule through demand response ( 𝐶𝐶𝑠𝑠𝑝𝑝ℎ) is still high or low respectively. This error in 
operation of HP due to forecasting error is overcome by the support of second level control. Figure 6.6 
illustrates various sub-controllers associated with second level control. Figure 6.6 (a) and (b) shows the 
logical operation of upper and lower limit temperature control. These sub-controllers overcome the 
scheduled demand response signal (𝐶𝐶𝑠𝑠𝑝𝑝ℎ) to determine the control action of HP operation. The upper 
limit controller shuts down the operation of HP when temperature of HTF in the storage (𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) reaches 
the maximum limit while (𝐶𝐶𝑠𝑠𝑝𝑝ℎ) is still high. Similarly, the lower limit temperature controller turns On 
the HP when temperature of HTF in the storage is lower than the minimum set limit while (𝐶𝐶𝑠𝑠𝑝𝑝ℎ) is still 
low. The logical operation for set (S) and reset (R) of each sub-controller module is selected to implement 
a hysteresis in the output (Q) of control action. Hysteresis in control action is implemented to avoid 
frequent On-Off operation of HP due to small deviation in set temperature logic. The hysteric in control 
action is illustrated using RS-Flip flop logic. The temperature difference of 5 and 15 𝐶𝐶𝑝𝑝  in reset logic of 
upper and lower temperature limit controller respectively is chosen arbitrarily, so that the controller can 
again follow the schedule. This reset value can be set as per the need of DR flexibility.  
 
Similarly, Figure 6.6 (c) shows the sub-controller module based on terminal voltage at the point of 
coupling (POC) of HP in electrical grid network. The issue of low voltage in long radial feeder of 
distribution grid may arise due to increase in electrical load. Shifting the operation of flexible load 
through the period of low voltage will be able to solve this issue [Sin19]. This shifting action is performed 
by the voltage limit controller. The HP is set to turn off when the terminal voltage is below the minimum 
set limit (𝑉𝑉𝑎𝑎𝑝𝑝𝑝𝑝) and can be turned on again once it reaches the recovery voltage limit (𝑉𝑉𝑝𝑝𝑒𝑒𝑝𝑝𝑝𝑝𝑣𝑣𝑒𝑒𝑝𝑝𝑝𝑝). The 
difference in minimum and recovery limit avoids haunting effect due to small fluctuation in voltage. 
However, in case of lower temperature limit or user preference (𝑃𝑃) to operate HP, the HP will turn On 
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despite of low voltage. This ensures end-user comfort. All three sub-controllers in Figure 6.6 (a,b,c) are 
combined together with logic operation illustrated in in Figure 6.6 (d) for final control signal for 
operation of HP (𝐶𝐶𝑎𝑎). The control action is summarized in Table 6.4.  
 

 
Figure 6.6: Logic diagram of secondary / local control system for HP operation 

 
 

Table 6.4: Logic table of local parameters for control of the HP 
𝑼𝑼 𝑳𝑳  𝑽𝑽 𝑪𝑪𝒔𝒔𝑻𝑻𝒔𝒔 P 𝑪𝑪𝒂𝒂 
0 X X X 1 1 
1 0 X X X 0 
0 1 X X X 1 
X 0 0 X 0 0 
0 X 1 1 X 1 
X means 0 or 1 
𝑼𝑼 𝐚𝐚𝐚𝐚𝐚𝐚 𝑳𝑳 cannot be in 
state 1 at the same time 

Simulation Results 

Simulations are performed to evaluate the potential of integrating electricity-to-heat systems within 
energy markets. First the optimization results of day-ahead planning are presented, followed by 
operational DR control simulations to incorporate grid voltage measurements to ensure the operation 
of heat pumps does not cause problems within the local grid. 
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Day-ahead market optimization results 
The DR control utilizes an optimized day-ahead planning as blueprint for its operational control. In this 
part we evaluate the results of this day ahead planning utilizing the on-off controllable heat pumps using 
data of one year. The optimization is performed with the objective to minimize the costs based on the 
2021 Dutch day-ahead market prices for electricity provided by ENTSO-E24. Next to that, we also 
optimize towards peak shaving by minimizing the Euclidean distance of the power vector (see [Ger15]). 
 
The results here are presented with respect to the operation of the heat pumps only. However, the 
models do have other loads as well which are considered in the optimization. In total, the 8 heat pumps 
combined consume just under 23 MWh of electricity annually in all three cases. The optimization results 
show a tremendous benefit in electricity costs. In the uncontrolled case, the annual cost for the 8 heat 
pumps combined is € 1,589.82 (without taxes), whereas in the price optimized case this is only € 1,111.17 
(€ 478.65 reduction, 30% reduction). When optimizing for peak shaving, the electricity costs remain 
more or less the same (€ 1554.53). 
 

 
Figure 6.7: Load duration curve of the heat pump electricity demand 

 
The load duration curve in Figure 6.7 shows that the peak shaving has a tremendous effect on lowering 
the stress on the grid by heat pumps. The peak load of heat pumps is reduced from 24 kW (all 8 
operating) to 18 kW (maximum 6 out of 8 operating simultaneously). As expected, the price optimization 
tries to maximize runtimes on moments with low prices and therefore tends to operate heat pumps 
simultaneously. This leads to a longer duration of high load compared to the uncontrolled case. 
 
Operational demand-response results 
Results of the DR application for optimal operation of HP in individual houses based on control action 
discussed in section 6.1.1 are presented here. Control parameters are tabulated in Table 6.5. The 
simulation results of the control action with DR application for operation of HP is presented in Figure 
6.8. 

 
24 https://transparency.entsoe.eu/ 
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Table 6.5: Parameter of second level control 
Parameter Unit Value 
𝑻𝑻𝑻𝑻𝒂𝒂𝒎𝒎 𝐶𝐶𝑝𝑝  65 
𝑻𝑻𝑻𝑻𝒎𝒎𝒆𝒆 𝐶𝐶𝑝𝑝  35 
𝑽𝑽𝑻𝑻𝒎𝒎𝒆𝒆 pu 0.95 

𝑽𝑽𝒇𝒇𝒆𝒆𝑻𝑻𝒇𝒇𝒆𝒆𝒆𝒆𝒇𝒇𝒓𝒓 pu 0.98 
𝑷𝑷 - 0 

 
 

  

  
Figure 6.8: Simulated results on thermal demand, temperature of HTF, state of energy in storage tank 

and transformer loading based in DR application. 
 
The thermal power delivered by the storage system (S1-S8) in houses (H01-H08) respectively is shown 
in Figure 6.8 (a). The temperature of the HTF delivering thermal power is shown in Figure 6.8 (b). The 
temperature of HTF delivering thermal power in individual houses is within the set limit, hence fulfilling 
the thermal demand. The SOE of individual storage tank in house is presented in Figure 6.8 (c). the SOE 
can go up to minimum value and the HP is turned on simultaneously to deliver thermal demand. The 
voltage at the POC of HP is within the permissible limit as seen from Figure 6.8 (d).  The control action 
of second level controller for house H01 is presented in Figure 6.9 for validation. Schedule operation of 
HP is not accurately estimated to maintain the SOE in the thermal storage tank between 0-100% as 
upper limit and lower limit controller is activated (Figure 6.9 (a)). HP operation based on optimal 
schedule and second level control action is illustrated in Figure 6.9 (b). Actual operation of HP follows 
the schedule until upper and lower temperature limit is attained.  
  



101022587 – SUSTENANCE –H2020-LC-SC3-2018-2019-2020 / H2020-LC-SC3-2020-NZE-RES-CC 

 _ 

 

Page 65 of 78 

  
Figure 6.9: Performance of second level control. 

 
It is observed from the simulation result that with the set limit of HTF temperature in storage tank and 
voltage at POC, the proposed control action can maintain thermal demand despite an error in the 
estimation of optimal schedule. 
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7 Conclusion 
This deliverable investigated the integration of electricity-to-heat systems into the electricity grid. 
Hereby, the specific focus is to utilize offered flexibility from heating devices in aggregated form for 
successful integration. This chapter answers the questions set out in the Introduction: 

• How to accurately model heat demand profiles and comfort constraints on a building level 
and derive its flexibility on an aggregated level? 

Chapter 3 surveyed existing literature on thermal envelope models, models of heating devices and the 
modelling of end-user comfort when it comes to perceived heat. Various models exist that have also 
been validated in practice before. The separate models make for a modular approach to model various 
use-cases and set-up, as well as to make trade-offs in complexity and desired minimum accuracy. The 
latter is key to efficient control and energy management systems. 
 

• How to translate complex non-linear thermal models from their long-term time-scales into 
accurate discrete flexibility models for optimal control in short-term electricity systems? 

Non-linearity cannot be avoided when modelling. Combining knowledge of Chapters 3 and 5, we 
conclude that it is best to follow a 2-step approach. Herein, the first step consists of day-ahead planning 
where non-linearities are mostly omitted to reduce computation time. The rationale here is that also 
other errors stemming from e.g. weather forecasts exist, making it pointless to have better models. 
During operational phases, more complex models can be utilized on a local scale. Alternatively, tracer 
devices might be used to ease computational complexity when large clusters are to be controlled. 
 

• How to efficiently coordinate a heterogeneous set of thermal devices within a community? 

Chapter 5 has presented various coordination strategies. Key here is to set-up a hierarchical and modular 
system with clear roles and responsibilities, both in time and location. Next to this, clear interfaces for 
communication to allow e.g., for distributed control for scalability is essential. A framework has 
presented in Section 5.2 to do so. 
 

• What is the added value and accuracy of thermal control on an aggregated community level 
over existing “business-as-usual” individual control? 

From the literature review in Chapter 3 we conclude that the main added value of aggregated flexibility 
is the increase in predictability of the offered flexibility for heat systems. This may offer more potential 
for service providers to act on a wider variety of markets and therefore apply revenue stacking to 
increase the overall benefits. The studies in Chapter 6 also highlight the benefits for the local grid when 
utilizing coordinated control to enhance the supply voltage levels. Next to this it is also shown that 
coordination of heat production can significantly lower the load on the grid, which is especially useful to 
enable the transition in weak grids that are too costly to reinforce. 
 
The presented theoretical foundation forms the basis on which electricity-to-heat devices can be 
integrated successfully in SUSTENANCE’s demonstrators. Furthermore, through its modularity, it can 
adapt to other locations as well. The differences within SUSTENANCE’s demonstrator sites therefore also 
provide a test-bed for further upscaling. It remains future work to validate the presented models and 
methods using measurements, observations, and learnings from the demonstrator work packages.   
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9 Annex A 
 

Average Temperature Model 

Considering the uniform temperature of the heat transfer fluid (HTF) inside the tank, the average HTF 
temperature in the storage tank can be calculated from eq.(10). The first term on the RHS is for charging, 
second for discharging, the third for energy stored in PCM and the fourth is loss from the storage tank. 

𝐶𝐶𝑓𝑓𝑑𝑑𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔
𝑑𝑑𝑡𝑡

=  𝐶𝐶𝑤𝑤�̇�𝑚𝑠𝑠�𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔� − 𝐶𝐶𝑤𝑤�̇�𝑚𝑝𝑝�𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔 − 𝑇𝑇𝑝𝑝� − �̇�𝑄𝐻𝐻𝐶𝐶𝑃𝑃 − �̇�𝑄𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 

                           =  𝐶𝐶𝑤𝑤�̇�𝑚𝑠𝑠�𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔� − 𝐶𝐶𝑤𝑤�̇�𝑚𝑝𝑝�𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔 − 𝑇𝑇𝑝𝑝� − 𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎�𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔 − 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎�
− 𝑈𝑈𝑝𝑝𝐴𝐴𝑠𝑠𝑝𝑝�𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔 − 𝑇𝑇𝑎𝑎� 

eq.(8) 

𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎 = effective heat transfer surface area (Conductive exchange) of the PCM [m2] 
𝐴𝐴𝑠𝑠𝑝𝑝= surface area to the thermal storage tank responsible for thermal loss [m2] 
𝐶𝐶𝑓𝑓 = 𝑚𝑚𝑤𝑤𝐶𝐶𝑤𝑤 = Thermal capacitance of HTF [J/K] 
𝐶𝐶𝑤𝑤 = specific heat capacity of HTF (water) [J/kg.K] 
𝐶𝐶𝑤𝑤�̇�𝑚𝑠𝑠�𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔�= Net rate of energy transport for charging storage tank 
𝐶𝐶𝑤𝑤�̇�𝑚𝑝𝑝�𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔 − 𝑇𝑇𝑝𝑝� = Net rage of energy flow during discharging of tank  
�̇�𝑚𝑝𝑝 = flow rate of heat transfer fluid for discharging storage tank [kg/s] 
�̇�𝑚𝑠𝑠 = flow rate of heat transfer fluid from source for charging storage tank [kg/s] 
𝑚𝑚𝑤𝑤  = mass of water in the tank (kg) 
�̇�𝑄𝐻𝐻𝐶𝐶𝑃𝑃= net rate of energy transport for charging/discharging PCM storage  
𝑇𝑇𝑎𝑎= ambient temperature [K] 
𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔 = average temperature of HTF in storage tank [K] 
𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎 = average temperature of PCM in storage tank [K] 
𝑇𝑇𝑝𝑝 = Temperature of return HTF from heat sink [K] 
𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎= overall heat transfer coefficient of PCM [W/m2.K] 
𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎�𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔 − 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎� = Net rate of energy exchanged between the HTF and the PCM 

capsule 
𝑈𝑈𝑝𝑝= overall heat transfer coefficient of thermal storage tank[W/m2.K] 
𝑈𝑈𝑝𝑝𝐴𝐴𝑠𝑠𝑝𝑝�𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔 − 𝑇𝑇𝑎𝑎�= Net rate of energy exchanged between the HTF and the ambient. 

Calculation of energy transfer between PCM and HTF:  

Mapping the shape of PCM into a rectangular block: To simplify the problem of effective heat transfer 
area among various geometry of PCM, an assumption is made as follows. The mapping is visualized as 
in Figure A.1 for cylinder and spherical PCM as an example.  

• The total number of PCM (N) in a tank is lumped into one single unit of rectangular block. 
• The mapped rectangular PCM block has same volume equal to N number of PCM material in 

the tank. 
• The upper surface area of mapped rectangular PCM block is only responsible for transfer of 

heat between HTF and PCM.  
• The upper surface area of the mapped rectangular block is equal to the total conducting surface 

area of the of the actual PCM geometry, as in eq.(11) for cylindrical PCM unit. 
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• Then the thickness of mapped PCM rectangular block is calculated as eq.(12), considering 
cylindrical PCM unit.  

• The total heat energy absorbed by the PCM is stored at the bottom of the rectangular block 
(i.e, the energy density is concentrated only at bottom layer, instead of distribution around the 
material.).  

• Similar mapping technique can be applied for any geometrical shape of PCM 

𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎 = 𝑁𝑁 × 𝐴𝐴1 eq.(9) 

𝑓𝑓𝑝𝑝𝑝𝑝𝑎𝑎 = 𝑓𝑓1 =
𝑁𝑁 × 𝑉𝑉1
𝑁𝑁 × 𝐴𝐴1

=
𝑉𝑉1
𝑁𝑁1

 eq.(10) 
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Figure A.1: Mapping of PCM geometry to rectangular block 
 

Let us neglect the thermal internal of PCM capsule wall (i.e, all the energy that is transferred to the PCM 
wall from the HTF through convection (�̇�𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣) is simultaneously transferred to the associated PCM 
control volume through conduction (�̇�𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). The conductive and convective Heat Transfer to PCM 
Capsule from HTF can be calculated from eq.(13) and eq.(14). 

�̇�𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣 =  ℎ𝑝𝑝𝑝𝑝𝑎𝑎𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎�𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔 − 𝑇𝑇𝑤𝑤� eq.(11) 

�̇�𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑘𝑘𝑝𝑝𝑝𝑝𝑎𝑎𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎�𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎�

𝑓𝑓𝑝𝑝𝑝𝑝𝑎𝑎
 eq.(12) 

𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎 = Effective surface area of PCM for heat exchange 
𝛽𝛽= melting fraction as in eq.(23) 
ℎ𝑝𝑝𝑝𝑝𝑎𝑎= convective heat transfer coefficient of PCM wall [W/m2.K] 
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𝑘𝑘𝑝𝑝𝑝𝑝𝑎𝑎= PCM conductivity [W/mK] [has different value for solid (𝑘𝑘𝑠𝑠), liquid (𝑘𝑘𝑝𝑝) and phase 
change (𝑘𝑘𝑝𝑝 − 𝑘𝑘𝑠𝑠)𝛽𝛽)] 

�̇�𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝= rate of heat transfer by conduction through PCM wall and PCM. 
�̇�𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣= rate of heat transfer is by convection from HTF to surface of PCM  
𝑇𝑇𝑝𝑝= temperature at start of liquidification of PCM[K] 
𝑇𝑇𝑠𝑠= Temperature at the start of solidification of PCM [K] 
𝑇𝑇𝑤𝑤= temperature of the PCM at the surface of contact between HTF and PCM [K] 
𝑓𝑓𝑝𝑝𝑝𝑝𝑎𝑎= thickness of the PCM [m] 

PCM conductivity during a phase change is calculated as a linear interpolation between liquid 
and solid-state value eq.(15) according to the enthalpy of each PCM control volume [2] 

𝑘𝑘𝑝𝑝𝑝𝑝𝑎𝑎 =  (𝑘𝑘𝑝𝑝 − 𝑘𝑘𝑠𝑠)𝛽𝛽 + 𝑘𝑘𝑠𝑠 eq.(13) 
 

The phase change of PCM occurs within a particular range of temperature due to mixture of different 
materials in PCM. PCM starts to solidify at temperature 𝑇𝑇𝑠𝑠 during release of thermal energy (or 
discharging). However, it starts to melt at temperature 𝑇𝑇𝑝𝑝  during absorption of thermal energy (or 
charging). 

Considering same amount of heat passes through each section during steady state as shown in eq.(16) 
and solving eq.(13) eq.(14), and eq.(16), we can derive eq.(17) and eq.(18), 

�̇�𝑄𝐻𝐻𝐶𝐶𝑃𝑃 =  �̇�𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑣𝑣 = �̇�𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 eq.(14) 

  ⟹    �̇�𝑄𝐻𝐻𝐶𝐶𝑃𝑃 =  𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎�𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔 − 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎� eq.(15) 

𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎 =
1

1
ℎ𝑝𝑝𝑝𝑝𝑎𝑎

+
𝑓𝑓𝑝𝑝𝑝𝑝𝑎𝑎
𝑘𝑘𝑝𝑝𝑝𝑝𝑎𝑎

 eq.(16) 

𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎 = overall heat transfer coefficient of PCM[W/m2.K] 
 

Calculation of PCM temperature (𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻):  

Energy is stored in PCM as a sensible heat and latent heat. During energy stored as sensible heat, the 
temperature of PCM rises, whereas during latent heat temperature remains constant. The rate of energy 
stored in PCM can be defined by eq.(19). The overall heat transfer coefficient during sensible heat area, 
as defined in eq.(18), changes based on conductivity defined in eq.(15).  

�̇�𝑄𝐻𝐻𝐶𝐶𝑃𝑃 = �̇�𝑄𝐻𝐻𝐶𝐶𝑃𝑃,𝑠𝑠 + �̇�𝑄𝐻𝐻𝐶𝐶𝑃𝑃,𝑝𝑝 eq.(17) 

�̇�𝑄𝐻𝐻𝐶𝐶𝑃𝑃,𝑠𝑠 = net rate of energy transport for charging/discharging PCM storage as sensible 
heat 

�̇�𝑄𝐻𝐻𝐶𝐶𝑃𝑃,𝑝𝑝 = net rate of energy transport for charging/discharging PCM storage as latent 
heat 

The temperature variation of PCM is defined with eq.(20), for sensible heat storage and during latent 
heat storage, temperature remains constant.  



101022587 – SUSTENANCE –H2020-LC-SC3-2018-2019-2020 / H2020-LC-SC3-2020-NZE-RES-CC 

 _ 

 

Page 75 of 78 

𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎𝐶𝐶𝑝𝑝𝑝𝑝𝑎𝑎
𝑑𝑑𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎
𝑑𝑑𝑡𝑡

=  𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎�𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔 − 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎� × 𝑆𝑆 eq.(18) 

Where, 

𝑆𝑆 =
0 𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎 = 𝑇𝑇𝑝𝑝 𝑇𝑇𝑒𝑒𝑑𝑑 𝑐𝑐ℎ𝑇𝑇𝑒𝑒𝑘𝑘𝑓𝑓𝑒𝑒𝑘𝑘
0 𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎 = 𝑇𝑇𝑠𝑠 𝑇𝑇𝑒𝑒𝑑𝑑 𝑑𝑑𝑓𝑓𝑅𝑅𝑐𝑐ℎ𝑇𝑇𝑒𝑒𝑘𝑘𝑓𝑓𝑒𝑒𝑘𝑘
1 𝑒𝑒𝑇𝑇𝑅𝑅𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒

 
eq.(19) 

𝐶𝐶𝑝𝑝𝑝𝑝𝑎𝑎 =  𝐶𝐶𝑝𝑝𝑝𝑝𝑎𝑎 =  (𝐶𝐶𝑝𝑝𝑝𝑝 − 𝐶𝐶𝑝𝑝𝑠𝑠)𝛽𝛽 + 𝐶𝐶𝑝𝑝𝑠𝑠 eq.(20) 

𝐶𝐶𝑝𝑝𝑝𝑝𝑎𝑎= specific heat of PCM [J/Kg.K] different for solid and liquid phase 
𝐶𝐶𝑝𝑝𝑝𝑝= specific heat of PCM in liquid phase [J/Kg.K] 
𝐶𝐶𝑝𝑝𝑠𝑠= specific heat of PCM in solid phase [J/Kg.K] 
𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎= total mass of PCM in the storage tank [kg] 
𝑆𝑆= control function to determine temperature rise during sensible heat storage.  
𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎 = average temperature of PCM in storage tank [K] 
𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎 = overall heat transfer coefficient of PCM[W/m2.K] 

The specific heat capacity of PCM is described in eq.(22) for different phases. During phase change 
process, 𝐶𝐶𝑝𝑝𝑝𝑝𝑎𝑎 is very high. This high value of 𝐶𝐶𝑝𝑝𝑝𝑝𝑎𝑎 causes slow rise in temperature. However, it is 
assumed that temperature of PCM remains constant during the phase change process, and thus 𝐶𝐶𝑝𝑝𝑝𝑝𝑎𝑎 is 
not considered during the period of phase change. However, if the flow of thermal energy in PCM is 
reversed during the middle of phase change process, the new value of 𝐶𝐶𝑝𝑝𝑝𝑝𝑎𝑎 is calculated as linear 
interpolation between liquid and solid-state as in in eq.(22). 

To determine the amount of latent heat storage in the tank, melting fraction is considered. Melting 
fraction is defined as ratio of total heat energy stored as latent heat to the total latent heat capacity of 
the material eq.(23).  

𝛽𝛽 =

0 𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎 < 𝑇𝑇𝑠𝑠

  
∫ 𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎�𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔 − 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎�𝑑𝑑𝑡𝑡
𝑝𝑝2
𝑝𝑝1

𝐿𝐿𝑝𝑝𝑝𝑝𝑎𝑎𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎
𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎 = 𝑇𝑇𝑝𝑝  𝑇𝑇𝑒𝑒𝑑𝑑 𝑐𝑐ℎ𝑇𝑇𝑒𝑒𝑘𝑘𝑓𝑓𝑒𝑒𝑘𝑘

∫ 𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎�𝑇𝑇𝑎𝑎𝑣𝑣𝑔𝑔 − 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎�𝑑𝑑𝑡𝑡
𝑝𝑝2
𝑝𝑝1

𝐿𝐿𝑝𝑝𝑝𝑝𝑎𝑎𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎
𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎 = 𝑇𝑇𝑠𝑠 𝑇𝑇𝑒𝑒𝑑𝑑 𝑑𝑑𝑓𝑓𝑅𝑅𝑐𝑐ℎ𝑇𝑇𝑒𝑒𝑘𝑘𝑓𝑓𝑒𝑒𝑘𝑘

1 𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎 > 𝑇𝑇𝑝𝑝

 eq.(21) 

𝛽𝛽= melting fraction  
𝐿𝐿𝑝𝑝𝑝𝑝𝑎𝑎= Latent heat of fusion of PCM [J/kg]  
𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎= total mass of PCM [Kg] 

Discretized PCM Storage Tank 
The storage tank is divided into 𝑒𝑒 number of horizontal layers with the equal mass of HTF and PCM 
material in it. The energy flow from each layer and between the stratified layer, as well as losses to the 
environment from the tank is well presented in Figure A.2 (a,b). The exchange of thermal energy from 
PCM is only with the HTF in each stratified layer. The modelling of discretized layers for the HTF is based 
on [Sin20].  
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Figure A.2: (a)Stratified PCM based thermal storage tank; (b) Stratified PCM based thermal storage 
tank with n layers and flow variables [Sin20] 

 
𝑇𝑇𝑝𝑝 = temperature of HTF in 𝑓𝑓𝑝𝑝ℎlayer , (𝑓𝑓 = 1,2,3 … . .𝑒𝑒)[K] 
𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 = temperature of PCM in 𝑓𝑓𝑝𝑝ℎlayer , (𝑓𝑓 = 1,2,3 … . .𝑒𝑒)[K] 
�̇�𝑚𝑒𝑒 = �̇�𝑚𝑠𝑠 − �̇�𝑚𝑝𝑝= mass flow rate of water between the stratified layers [kg/s] 
𝐴𝐴𝑞𝑞= horizontal area of each stratified layer [m2] 
𝐶𝐶𝑤𝑤 = specific heat capacity of HTF (water) [J/kg.K] 
𝜆𝜆𝑤𝑤  = effective vertical heat conductivity of water (1−1.5)[W/mK]  [Eic06] 
𝛿𝛿+ , 𝛿𝛿− = logic parameter (0,1) to define the direction of flow of water inside the storage 

tank from top to bottom and bottom to top respectively 
𝑈𝑈𝑝𝑝= overall heat transfer coefficient of thermal storage tank[W/m2.K] 

The heat exchange between PCM and HTF in each layer is added based on eq.(24) derived from eq.(20),  
where the subscript (𝑓𝑓) denotes 𝑓𝑓𝑝𝑝ℎ layer of discretization in the storage tank. The complete energy flow 
in the stratified PCM storage tank is shown in Figure A.2 (b). 

𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝𝐶𝐶𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝
𝑑𝑑𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝

𝑑𝑑𝑡𝑡
=  𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝� × 𝑆𝑆𝑝𝑝 eq.(22) 

𝑆𝑆𝑝𝑝 =
0 𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 = 𝑇𝑇𝑝𝑝 𝑇𝑇𝑒𝑒𝑑𝑑 𝑑𝑑𝑑𝑑𝑒𝑒𝑓𝑓𝑒𝑒𝑘𝑘 𝑐𝑐ℎ𝑇𝑇𝑒𝑒𝑘𝑘𝑓𝑓𝑒𝑒𝑘𝑘
0 𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 = 𝑇𝑇𝑠𝑠 𝑇𝑇𝑒𝑒𝑑𝑑 𝑑𝑑𝑑𝑑𝑒𝑒𝑓𝑓𝑒𝑒𝑘𝑘 𝑑𝑑𝑓𝑓𝑅𝑅𝑐𝑐ℎ𝑇𝑇𝑒𝑒𝑘𝑘𝑓𝑓𝑒𝑒𝑘𝑘
1 𝑒𝑒𝑇𝑇𝑅𝑅𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒

 eq.(23) 

𝐶𝐶𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 =  
𝐶𝐶𝑝𝑝𝑠𝑠 𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 < 𝑇𝑇𝑠𝑠
− 𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑠𝑠 ≤ 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 ≤ 𝑇𝑇𝑝𝑝
𝐶𝐶𝑝𝑝𝑝𝑝 𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 > 𝑇𝑇𝑝𝑝

 eq.(24) 
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𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 =
1

1
ℎ𝑝𝑝𝑝𝑝𝑎𝑎

+
𝑓𝑓𝑝𝑝𝑝𝑝𝑎𝑎
𝑘𝑘𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝

 eq.(25) 

𝑘𝑘𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 =  (𝑘𝑘𝑝𝑝 − 𝑘𝑘𝑠𝑠)𝛽𝛽𝑝𝑝 + 𝑘𝑘𝑠𝑠 eq.(26) 

𝛽𝛽𝑝𝑝 =

0 𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 < 𝑇𝑇𝑠𝑠

  
∫ 𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝�𝑑𝑑𝑡𝑡
𝑝𝑝2
𝑝𝑝1

𝐿𝐿𝑝𝑝𝑝𝑝𝑎𝑎𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝
𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 = 𝑇𝑇𝑝𝑝  𝑇𝑇𝑒𝑒𝑑𝑑 𝑐𝑐ℎ𝑇𝑇𝑒𝑒𝑘𝑘𝑓𝑓𝑒𝑒𝑘𝑘

∫ 𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝�𝑑𝑑𝑡𝑡
𝑝𝑝2
𝑝𝑝1

𝐿𝐿𝑝𝑝𝑝𝑝𝑎𝑎𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝
𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 = 𝑇𝑇𝑠𝑠 𝑇𝑇𝑒𝑒𝑑𝑑 𝑑𝑑𝑓𝑓𝑅𝑅𝑐𝑐ℎ𝑇𝑇𝑒𝑒𝑘𝑘𝑓𝑓𝑒𝑒𝑘𝑘

1 𝑓𝑓𝑆𝑆𝑒𝑒, 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 > 𝑇𝑇𝑝𝑝

 eq.(27) 

𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 =  𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝

, where 𝑒𝑒 is the number of stratified layers  

𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝 =  𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝

𝑝𝑝
, where 𝑒𝑒 is the number of stratified layers  

  
The temperature of the HTF in each discrete layer is calculated using eq.(30) [Sin19] 

𝑚𝑚𝑝𝑝𝐶𝐶𝑤𝑤
𝑑𝑑𝑇𝑇𝑝𝑝
𝑑𝑑𝑡𝑡

=  �̇�𝑚𝑠𝑠𝐶𝐶𝑤𝑤(𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑝𝑝)𝛿𝛿(𝑝𝑝=1) + �̇�𝑚𝑝𝑝𝐶𝐶𝑤𝑤(𝑇𝑇𝑝𝑝 − 𝑒𝑒)𝛿𝛿(𝑝𝑝=𝑝𝑝) + �̇�𝑚𝑒𝑒𝐶𝐶𝑤𝑤(𝑇𝑇𝑝𝑝−1 − 𝑇𝑇𝑝𝑝)𝛿𝛿+𝛿𝛿(𝑝𝑝≠1)

+ �̇�𝑚𝑒𝑒𝐶𝐶𝑤𝑤(𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑝𝑝+1)𝛿𝛿−𝛿𝛿(𝑝𝑝≠𝑝𝑝) −𝑈𝑈𝑝𝑝𝐴𝐴𝑠𝑠𝑝𝑝(𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑎𝑎)

+
𝐴𝐴𝑞𝑞𝜆𝜆𝑤𝑤
𝑧𝑧 �(𝑇𝑇𝑝𝑝−1 − 𝑇𝑇𝑝𝑝)𝛿𝛿(𝑝𝑝≠1) − (𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑝𝑝+1)𝛿𝛿(𝑝𝑝≠𝑝𝑝)�

− 𝑈𝑈𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝�𝑇𝑇𝑝𝑝 − 𝑇𝑇𝑝𝑝𝑝𝑝𝑎𝑎,𝑝𝑝� 

eq.(28) 

 
𝐴𝐴𝑠𝑠𝑝𝑝= surface area of the side wall of each discrete layer [m2] 
𝐴𝐴𝑞𝑞= Horizontal surface area of the storage tank [m2] 
�̇�𝑚𝑒𝑒 = (�̇�𝑚𝑠𝑠 − �̇�𝑚𝑝𝑝): effective flow rate of HTF inside the tank [kg/s] 
𝑚𝑚𝑝𝑝= mass of HTF in each discrete layer [kg] 
𝑇𝑇𝑝𝑝= Temperature of HTF in each discrete layer [kg] 
𝑧𝑧= Thickness of each discrete layer [m] 
𝛿𝛿+ = 1 𝑓𝑓𝑓𝑓 �̇�𝑚𝑒𝑒 > 0, 𝑒𝑒𝑇𝑇𝑅𝑅𝑒𝑒 0  
𝛿𝛿− = 1 𝑓𝑓𝑓𝑓 �̇�𝑚𝑒𝑒 < 0, 𝑒𝑒𝑇𝑇𝑅𝑅𝑒𝑒 0  
𝛿𝛿(𝑋𝑋) = 1 for all the conditions defined by term 𝑋𝑋 is true, else 0. 
𝜆𝜆𝑤𝑤= effective vertical heat conductivity of water (1−1.5 W/mK]  [Eic06] 
 

Calculation of PCM tank parameters for simulation.  
The experimental data is taken from [Sin17]. 
 Volume of storage tank:  𝑉𝑉𝑠𝑠𝑝𝑝𝑝𝑝 = 785 𝑇𝑇𝑓𝑓𝑡𝑡 
 Ratio of height to diameter of the tank: 𝑅𝑅𝑎𝑎 = 1.45

0.734
= 2 
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 Capsules formed a packed bed with a porosity:  𝜀𝜀 = 0.57 = 𝑣𝑣𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑝𝑝𝑝𝑝𝑜𝑜𝑎𝑎𝑒𝑒
𝐻𝐻𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝 𝑣𝑣𝑝𝑝𝑝𝑝𝑜𝑜𝑎𝑎𝑒𝑒

=

 𝑣𝑣𝑝𝑝𝑝𝑝𝑜𝑜𝑎𝑎𝑒𝑒 𝑝𝑝𝑓𝑓 𝑤𝑤𝑎𝑎𝑝𝑝𝑒𝑒𝑝𝑝 (𝐻𝐻𝐻𝐻𝐻𝐻)
𝐻𝐻𝑝𝑝𝑝𝑝𝑎𝑎𝑝𝑝 𝑣𝑣𝑝𝑝𝑝𝑝𝑜𝑜𝑎𝑎𝑒𝑒

   

∴ volume of water in the storage tank: 𝑉𝑉ℎ𝑝𝑝𝑓𝑓 = 0.57 ×  785 = 447.5 𝑇𝑇𝑓𝑓𝑡𝑡 
 Total number of pcm capsule:  𝑁𝑁 = 950 
 Volume of each capsule: 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝 = 290 ml 
 Total volume of pcm:  𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎 = 950 × 0.29 = 275.5 liter=0.2755 m3 
 Density of PCM [kg/m3]:  𝜌𝜌𝑝𝑝𝑝𝑝𝑎𝑎= 1280  
 Total mass of pcm: 𝑚𝑚𝑝𝑝𝑝𝑝𝑎𝑎 = 𝜌𝜌𝑝𝑝𝑝𝑝𝑎𝑎  ×  𝑉𝑉𝑝𝑝𝑝𝑝𝑎𝑎 = 1280 × 0.2755 = 353 𝑘𝑘𝑘𝑘  
 Volume of plastic wall = 785-447.5-275.5 = 62 lit 
 Area of PCM for heat transfer [m2]: 𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎 = 𝑁𝑁 × 4𝜋𝜋𝑅𝑅2 = 950 × 4𝜋𝜋0.082 = 76.403 𝑚𝑚2 

(individual capsule has surface area equivalent sphere of radius 80mm) [Gra21] 

 thickness of the PCM [m]:  𝑓𝑓𝑝𝑝𝑝𝑝𝑎𝑎 = 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝
𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝

= 0.2755
76.403

= 0.00361 m=3.61mm 

 Solidification temperature:  𝑇𝑇𝑠𝑠 = 57.5  oC 
 Melting temperature:  𝑇𝑇𝑝𝑝 = 56  oC 

 Specific Heat capacity of PCM capsule [J/(kgK)]:  𝐶𝐶𝑝𝑝𝑝𝑝𝑎𝑎 =  
𝐶𝐶𝑝𝑝𝑠𝑠 = 3000
− − −
𝐶𝐶𝑝𝑝𝑝𝑝 = 3000

 

 Heat conductivity pf PCM [W/(mK)]:  𝑘𝑘𝑝𝑝𝑝𝑝𝑎𝑎 = 𝑘𝑘𝑠𝑠 = 1
𝑘𝑘𝑝𝑝 = 0.6  

 Heat storage capacity (50-65oC)= HLpcm =240kJ/kg 
 Latent heat of fusion [kJ/kg]: 𝐿𝐿𝑝𝑝𝑝𝑝𝑎𝑎 = HLpcm-𝑚𝑚𝐶𝐶𝑝𝑝𝑝𝑝𝑎𝑎Δ𝑇𝑇 = 240000-1x3000x15 = 195000 J/kg 

 Flow rate for charging [kg/s]:  �̇�𝑚𝑠𝑠 = 360 𝑡𝑡𝑔𝑔
ℎ

= 0.1 𝑡𝑡𝑔𝑔
𝑠𝑠

 
 convective heat transfer coefficient of PCM wall (ℎ𝑝𝑝𝑝𝑝𝑎𝑎) [W/m2.K]= 100 

For Stratified layer tank 
 Number of stratified layer in the tank:  𝑒𝑒 = 5 
 Mass of HTF and PCM are equally divided into each layer of storage tank 
 Effective vertical heat conductivity of water: 𝜆𝜆𝑤𝑤 = 0.644  [W/mK]  [Eic06] 
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